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ABSTRACT 
 

The ability to place, mark and evaluate a product in production lines is critical for the 

laser marking of horticultural plants. This study was divided into two objectives. Firstly, 

the investigation aimed to find the optimal position for marking horticultural products. 

The study developed and examined algorithms for determining the optimal marking 

position of poinsettia leaves and banana hands. Two methods of segmentation were 

performed: distance transform-watershed segmentation and main leaf skeleton 

segmentation. Secondly, laser marking parameters were evaluated in order to 

optimize the marking process without destroying the horticultural products (i.e. 

poinsettia leaves and bananas) and to ensure readable text, patterns or codes. 

Methods of image processing were employed to develop a laser positioning system 

and to read and assess the quality of the pattern or codes. 

 

According to the results, distance transform-watershed segmentation is effective in 

segmenting occluded plant leaves which show significant differences in depth. Using 

this method with Kinect V1 leads to a low identification rate. However, the precision of 

depth measurement can be enhanced by implementing Kinect V2, which yields a 

92.5% classification rate, whereas the main leaf skeleton method yields a lower 

classification rate (80%). Moreover, the proposed algorithms are successful in placing 

a 2D code on banana hands effectively. Positioning of 2D codes on the ventral banana 

side is a suggested application.  

 

It is possible to use laser marking on poinsettia leaves and bananas without damaging 

the product. Laser marking of 0.5 W [0.55 J per character] proved to be the lowest 

energy that can produce a high contrast, and also produces no apparent heat affected 

zone that is visually detectable on the poinsettia leaves. In terms of laser marking on 

bananas, readability results are achieved by applying low power and a longer marking 

time, whereby an 80-100% readability of data matrix codes after storage was 

obtained.   

 

Keywords: laser marking, bananas, poinsettia, 2D codes, segmentation 
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ZUSAMMENFASSUNG 
 

 

Für die Laserbeschriftung von Zier- und Nutzpflanzen während der Produktion ist es 

sehr wichtig, die Markierung genau zu platzieren, so dass die Beschriftung gut lesbar 

ist. Diese Studie diente zwei Zwecken: Erstens sollte die optimale Positionierung des 

Aufdruckes an Zier- und Nutzpflanzen ermittelt werden. Hierzu entwickelten und 

testeten wir Algorithmen fuer Weihnachsternblätter (Poinsettia) und Bananen. Zur 

Segmentierung verwendeten wir zwei Methoden: "distance transform watershed 

segmention" und "main leaf skeleton segmentation". Zweitens wurden die 

Markierungsparameter evaluiert, um den optimalen Markierungsprozess zu 

bestimmen, der einerseits die Produkte nicht zerstört, aber gleichzeitig sicherstellt, 

dass Text, Muster oder Kodierungen gelesen werden können.  

 

Methoden zur Bildaufbereitung wurden verwendet, um ein Laserpositionssystem zu 

entwickeln und die Qualität der Muster und Kodierungen zu bestimmen. Nach den 

Ergebnissen zeigte sich, dass die "distance transform-watershed segementation" 

effektiv für überlappend Blätter ist, deren Dicke significant variert. Die Verwendung 

von Kinect V1 führt zu einer geringen Identifizierung. bei Verwendung von Kinect V2 

kann die Genauigkeit der Dickenmessung verbessert werden, was zu einer 

Klassifizierungsrate von 92.5% führte. Dagegen zeigte die Verwendung der "leaf 

skeleton segmentation" mit 80% eine niedrigere Klassifizierungsrate. Ausserdem 

liessen sich die vorgeschlagenen Algorithmen erfolgreich bei der Platzierung von 2D 

Kodierungen auf Bananen anwenden. Die Positionierung von 2D Kodierungen auf der 

ventralen Bananenseite wird empfohlen.  

 

Es ist möglich, Lasermarkierungen auf Weihnachtssternblättern und Bananen zu 

verwenden, ohne das Produkt zu beschädigen. Lasermarkierungen mit 0.5 W (0.55 

J/Character) wurde als niedrigste Energierate für Weihnachtssternblätter bestimmt, mit 

der ein hoher Kontrast ohne sichtbare Hitzeschaedigung erkennbar waren. Bei 

Bananen lieferte die Lasermarkierung gute Lesbarkeit bei Anwendung von geringerer 

Energie aber längerer Expositionszeit. Nach Lagerung dieser Proben, wurde eine 80 - 

100%ige Lesbarkeit von Kodierungen festgestellt. 

 

Schlagwörter: Lasermarkierung, Bananen, Poinsettia, 2D Kodierung, Segmentation 
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SYMBOLS AND ABBREVIATIONS 
 

a. Symbols 

 

Symbols  Description [units]  

ℎ1    gray level histogram [-] 

∩   intersection [-] 

Δm    change in mass [g] 

ΔT   change in temperature [K] 

σ   the standard deviation of the Gaussian distribution [-] 

𝜎𝑤
2    within-class variance [-] 

𝜎1
2    variance of the pixels in the background (below threshold) [-] 

𝜎2
2   variance of the pixels in the foreground (above threshold) [-] 

µ   mean value [-] 

𝞹   phi 

A   major radius [pixels] 

B   minor radius [pixels] 

B1 and B2  minimum gray values of two neighboring basins [pixels] 

CB   class background [-] 

CF   class foreground [-] 

CB    catchment basin [-] 

Cp     specific heat [J kg
-1

 K
-1

] 

Dpi    dot per inch [-] 

Gt   pixel at time t [pixels] 

Gx    gradients in the x-directions [-] 

Gy   gradients in the y-directions [-] 

h   horizontal scan direction [-] 

Hv    heat of vaporization for water [J g
-1

] 

HomMat2D  homogeneous 2D transformation matrix [-] 

Ic   corrected image [-] 

Id    dark image recorded by closing the camera lens completely [-] 

Ih    acquired hyperspectral image [-] 

Iw    white reference image with 99% reflectance [-] 

k    number of decoded codes [-] 

L    gray levels of gray image [-] 



Symbols and abbreviations 
     

iv 

 

M²    beam quality factor [-] 

m     mass of substance [kg] 

N    sample size [-] 

n   number of pixels [-] 

p   laser power [W] 

P   pixels of contour [pixels] 

Phi   rotation angle [-] 

p   probability [%] 

Qtotal   heat energy total [J] 

Qwater   heat energy of water [J] 

Qglass   heat energy of glass [J] 

Qwater vaporization  heat energy of vaporization [J] 

r    readability [%] 

RH   relative humidity [%] 

SF   shape factor ratio [-] 

SL   successful main leaf detected [%] 

Sx   scale factor along x-axis [-] 

Sy   scale factor along y-axis [-] 

t   marking time [s per module] 

th   threshold value [-] 

T   temperature [°C] 

Tx   translation along x-axis [-] 

Ty   translation along y-axis [-] 

Thigh   upper threshold [-] 

Tlow   lower threshold [-] 

v   vertical scan direction [-] 

𝑤𝐵   weight of the background [-] 

𝑤𝐹   weight of the foreground [-] 

W  minimum gray value of the watershed that splits the two basins 

[pixels] 

Xw,Yw,Zw  tristimulus of CIE-XYZ values with reference to the white spot [-] 

x   the distance from the origin in the horizontal axis [-] 

y   the distance from the origin in the vertical axis [-] 

(x’,y’)   the neighbors of (x,y) along the direction to an edge [-] 
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b. Abbreviations 

Abbreviations Description 

1D    one-dimensional 

2D    two-dimensional  

3D     three-dimensional 

A    ampere 

AIAG   automotive industry action group 

AIDC   automatic identification and data capture 

AIM    association for automatic identification and mobility 

ANU   axial non-uniformity 

ASCII   American standard code for information interchange 

ATA   air transportation association 

B/W   black and white 

°C    degree of Celsius 

CCD   charge-coupled device 

CIE    French commission internationale de l’éclairage  

CMOS   complementary metal–oxide–semiconductor 

CO2    carbon dioxide 

CW    continuous wave 

dpi    dot per inch 

DM code  data matrix code 

4-DoF   four degrees of freedom 

ECC200  error correction code 200 

EIA    electronics industry association 

EU    European Union 

FPD   fixed pattern damage 

Fps    frame per second 

GNU   grid non-uniformity 

GPM   gallon per minute 

GPS   global positioning system 

h    hour 

HAZ   heat affected zone 

HomMat2D  Homogeneous 2D transformation matrix 

HSV   hue, saturation, value 

IEC    international electro technical commission 
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IR    infrared 

ISO    international organization for standardization 

L    liter 

LASER  light amplification by stimulated emission of radiation 

MOD   modulation 

mRad   micro radiance 

mW    microwatt 

mm    millimeter 

µm    micrometer 

μl    microliter 

µsec   microsecond 

Nd:YAG  neodymium-doped yttrium aluminum garnet 

nm    nanometer 

OCR   optical character recognition 

PDF 417  portable data file 417 

Phi    rotation angle 

PLU   price look-up 

PWM   pulse width modulation 

QR code  quick response code 

RAM   random access memory 

RFID   radio frequency identification 

RGB   red, green, blue 

RGB-D  red, green, blue, depth 

RH    relative humidity 

SC    symbol contrast 

SEMI   semiconductor equipment and materials international 

SDK   software development kit 

SF    shape factor ratio 

SL     successful main leaf detected 

Sx   scale factor along x-axis 

Sy   scale factor along y-axis 

SVM   support vector machine 

TEM   transvers electromagnetic mode 

ToF  camera  time-of-flight camera 

Tx    translation along x-axis 
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Ty    translation along y-axis 

UEC   unused error correction 

USA   united states of America 

USB   universal serial bus 

UV    ultraviolet 

VDC   volt direct current 

V1    version 1 

V2    version 2 

W    watt 

WPF   windows presentation foundation 

YAG   yttrium aluminum garnet 

ZXing   zebra crossing 



Table of contents 
    

viii 

 

TABLE OF CONTENTS 

 

Abstract ......................................................................................................................... i 

Zusammenfassung ........................................................................................................ ii 

Symbols and Abbreviations .......................................................................................... iii 

Table of Contents ....................................................................................................... viii 

1. Introduction .............................................................................................................. 1 

2. State of the art of laser marking on horticultural products ......................................... 3 

2.1. Effects, scopes and applications ........................................................................ 3 

2.1.1. Technical aspects of laser marking ............................................................. 3 

2.1.2. Effects of laser radiation on surfaces ........................................................... 5 

2.1.3. Laser marking applications on horticultural products ................................... 6 

2.2. Challenges in laser marking on horticultural products ........................................ 8 

2.2.1. Positioning of the laser ................................................................................ 8 

2.2.1.1. General aspects .................................................................................... 8 

2.2.1.2. Image processing as a tool for positioning in complex plant 

situations .............................................................................................. 9 

2.2.1.2.1. Positioning and localization on leaves ........................................... 9 

2.2.1.2.2. Positioning and localization on fruits and stems ........................... 12 

2.2.1.3. Tasks (first) ......................................................................................... 13 

2.2.2. Laser and marking parameters .................................................................. 14 

2.2.2.1. General aspects .................................................................................. 14 

2.2.2.2. Parameters for laser application on leaves ......................................... 15 

2.2.2.3. Parameters for utilizing lasers on fruits and stems .............................. 17 

2.2.2.4. Tasks (second) ................................................................................... 17 

2.2.3. Detection and quality assessment of marking patterns .............................. 19 

2.2.3.1. General aspects of marking codes ...................................................... 19 

2.2.3.2. Detection of 2D codes ......................................................................... 19 



Table of contents 
    

ix 

 

2.2.3.3. Quality standards and assessment of 2D code ................................... 21 

2.2.3.4. Effects of laser marking on 2D codes ................................................. 21 

2.2.3.4.1. Effects on industrial materials ...................................................... 21 

2.2.3.4.2. Effects on biological/horticultural products ................................... 22 

2.2.3.5. Tasks (third) ........................................................................................ 22 

3. Research objectives ............................................................................................... 23 

4. Materials and Methods ........................................................................................... 25 

4.1. Materials .......................................................................................................... 25 

4.1.1. Poinsettia plants ........................................................................................ 25 

4.1.1.1. Optimum laser positioning .................................................................. 25 

4.1.1.2. Optimum laser parameters ................................................................. 26 

4.1.2. Bananas .................................................................................................... 27 

4.1.2.1. Optimum laser positioning .................................................................. 27 

4.1.2.2. Optimal laser parameters .................................................................... 27 

4.2. Laser systems .................................................................................................. 28 

4.2.1. Technical data ........................................................................................... 28 

4.2.2. Implementation of the laser process .......................................................... 29 

4.2.3. Calculation of the laser output ................................................................... 31 

4.3. Cameras and image acquisition tools .............................................................. 32 

4.4. Image processing tools .................................................................................... 34 

4.4.1. Image processing software tools ............................................................... 34 

4.4.2. Halcon operators used .............................................................................. 36 

4.5. Statistics and hardware data processing .......................................................... 37 

4.6. Implementation of the investigation for optimum laser positioning ................... 38 

4.6.1. Experiment and quality assessment for poinsettia ..................................... 38 

4.6.1.1. Combined RGB-Depth ........................................................................ 38 

4.6.1.1.1. Color segmentation based depth image ...................................... 38 

4.6.1.1.2. Depth image segmentation based on distance transform 

watershed method ...................................................................... 40 



Table of contents 
    

x 

 

4.6.1.2. The usage of main leaf skeleton ......................................................... 44 

4.6.2. Experiment and quality assessment for bananas ...................................... 51 

4.6.2.1. Pre-processing and background removal............................................ 51 

4.6.2.2. Selecting the area of interest .............................................................. 54 

4.7. Implementation of the investigation for optimum laser parameters .................. 58 

4.7.1. Experiment and quality assessment for poinsettia ..................................... 58 

4.7.1.1. Laser marking parameters .................................................................. 58 

4.7.1.2. Assessment of marking ....................................................................... 59 

4.7.2. Experiment and quality assessment for bananas ...................................... 60 

4.7.2.1. Spectral reflectance of marked bananas ............................................. 60 

4.7.2.2. Quality of the codes ............................................................................ 60 

4.7.2.3. Readability of the codes ...................................................................... 62 

4.7.2.3.1. Encoding data matrix code .......................................................... 62 

4.7.2.3.2. Procedures .................................................................................. 63 

5. Results ................................................................................................................... 65 

5.1. Results for optimization of laser positioning ..................................................... 65 

5.1.1. Developed algorithms ................................................................................ 65 

5.1.1.1. Algorithms and procedures for poinsettia ............................................ 65 

5.1.1.2. Algorithms and procedure for bananas ............................................... 70 

5.1.2. Evaluation of the developed algorithms ..................................................... 72 

5.1.2.1. Algorithm evaluation for poinsettia ...................................................... 72 

5.1.2.1.1. RGB-Depth algorithms ................................................................. 72 

5.1.2.1.1.1. Color segmentation based on depth images 72 

5.1.2.1.1.2. Depth image segmentation based on distance transform-

watershed method 72 

5.1.2.1.2. Main leaf skeleton algorithms ...................................................... 73 

5.1.2.2. Algorithm evaluation for bananas ........................................................ 77 

5.1.2.2.1. Algorithm evaluation for banana fingers ....................................... 77 

5.1.2.2.2. Algorithm evaluation for banana hands ........................................ 78 

5.2. Optimization of laser parameters for marking ................................................... 81 



Table of contents 
    

xi 

 

5.2.1. Evaluation of energy output ....................................................................... 81 

5.2.2. Laser parameter optimization for poinsettia ............................................... 82 

5.2.3. Laser parameter optimization for bananas ................................................ 87 

5.2.3.1. Spectral reflectance of marked bananas ............................................. 87 

5.2.3.2. Quality of codes .................................................................................. 87 

5.2.3.2.1. Decode ........................................................................................ 87 

5.2.3.2.2. Contrast values ............................................................................ 89 

5.2.3.2.3. Axial non-uniformity (ANU) .......................................................... 90 

5.2.3.2.4. Grid non-uniformity (GNU) ........................................................... 91 

5.2.3.2.5. Unused error correction (UEC) .................................................... 92 

5.2.3.2.6. Damages to the codes during storage time ................................. 93 

5.2.3.3. Readability of the codes ...................................................................... 94 

6. Discussion .............................................................................................................. 98 

6.1. Discussion of the results relating to the positioning problems .......................... 98 

6.1.1 Procedures for poinsettia ............................................................................ 98 

6.1.1.1. Color segmentation based depth image.............................................. 98 

6.1.1.2. Depth image segmentation based on a distance transform-

watershed method .............................................................................. 98 

6.1.1.3. Main leaf skeleton ............................................................................... 99 

6.1.2. Procedures for bananas .......................................................................... 101 

6.1.2.1. Evaluation for banana fingers ........................................................... 101 

6.1.2.2. Evaluation of banana hands ............................................................. 102 

6.2. Discussion of the results relating to the optimization of laser parameters ...... 104 

6.2.1. Application for poinsettia ......................................................................... 104 

6.2.1.1. Laser-poinsettia leaves interactions .................................................. 104 

6.2.1.2. Technical aspects ............................................................................. 105 

6.2.2. Application for bananas ........................................................................... 105 

6.2.2.1. Spectral reflectance of marked bananas ........................................... 105 

6.3.2.2. Quality of the codes .......................................................................... 106 



Table of contents 
    

xii 

 

6.3.2.3. Readability of the codes .................................................................... 107 

6.3. Possible application relating to the results ..................................................... 108 

6.3.1. Application for poinsettia and bananas .................................................... 108 

6.3.2. Application for other products (for example: petunia stems) .................... 109 

6.4 Future work ..................................................................................................... 111 

7. Conclusions .......................................................................................................... 112 

7.1. Optimization of laser positioning for poinsettia leaves .................................... 112 

7.2. Optimization of laser positioning for bananas ................................................. 112 

7.3. Optimization of laser parameters for marking poinsettia leaves ..................... 112 

7.4. Optimization of laser parameter for marking bananas .................................... 113 

References ............................................................................................................... 114 

List of Figures ........................................................................................................... 131 

List of Tables ............................................................................................................ 135 

Publications .............................................................................................................. 136 

Curriculum Vitae ....................................................................................................... 138 

 



1. Introduction     

1 

 

1. INTRODUCTION 
 

A number of policies and standards regarding food safety issues and quality 

management have been established for the food industry (Aung and Chang, 2014). A 

key tool to fulfill legislative requirements and meet food quality and safety standards is 

traceability. According to Trienekens et al. (2014), traceability is the capability to 

describe the ongoing location of products and to trace products based on their origins 

of production. Achieving a transparent production circle by improving the availability of 

consumer data is expected to improve knowledge-based consumer trust towards the 

food sector. 

Consumers need valid information of traceability with regard to safety 

protection against fraud. Traceability has become a process of providing safer food in 

the food supply chain (Aung and Chang, 2014). It contributes to increased consumer 

trust and plays an essential role in establishing the authenticity of the food (van 

Rijswijk et al., 2008; Verbeke et al., 2007) and connecting producers to consumers 

(Regattieri et al., 2007).  

Furthermore, traceability is a necessary practice which gives information about 

the origin, handling, retailing, and final destination of foodstuffs (Bertolini et al., 2006; 

Peres, et al. 2007). According to Armenta and Guardia (2016), a product traceability 

system needs to identify all of the physical entities involved in the product’s 

manufacture: the locations of processing, packaging, and storage, as well as every 

agent in the supply chain. One of the technologies of a traceability system is 

Automatic Identification and Data Capture (AIDC) technology. According to Scholten 

et al. (2016), AIDC consists of some methods such as: automatically identifying 

objects, collecting data, and entering data into personal computer. Components of 

AIDC technologies include barcodes, optical character recognition (OCR), radio 

frequency identification (RFID), smart cards, voice recognition, and so on.  

The labeling of horticultural products has the potential to provide product 

traceability, thereby strengthening food safety systems against foodborne outbreaks. 

Currently, horticultural products entering into conventional retail sales chains are 

marked with paper stickers. However, paper stickers have some disadvantages: they 

can easily become detached, lost, exchanged, and can be quite expensive (Drouillard 

and Kanner, 1999; Edxeberria et al., 2006a; Marx et al., 2013). Applying laser labeling 

instead of traditional labels is a promising alternative and can aid in the avoidance of 
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counterfeiting. Laser marking involves marking a permanent, higher quality mark, with 

a greater marking speed and higher reproducibility.  
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2. STATE OF THE ART OF LASER MARKING ON HORTICULTURAL PRODUCTS 
 

2.1. Effects, scopes and applications 

2.1.1. Technical aspects of laser marking  

 Laser marking has three basic procedures that have been extensively used in 

laser marking: dot marking (Ion, 2005), synchronized image scanning (Golnabi, 1999) 

and galvanometric scanning marking (Chen, et al. 2008). Dot marking systems produce 

characters by creating small dots in given patterns to generate the required characters. 

The beam is scanned and pulses when a dot is required. A rotating polygon mirror, 

acoustic-optical device, or piezoelectric scanning can be used to generate the pulse 

(Ion, 2005). The disadvantage of this method is its lower resolution in bitmap mode 

processing. The synchronized image scanning process involves a laser source, a laser 

beam expander, a mask, and a focusing lens (Golnabi, 1999). Laser beams pass 

through the expander and project the patterns on the mask (a kind of printed negative), 

created in advance, and then mark images on the workpiece. The images marked on the 

workpiece are the same as those on the mask of patterns. The advantages of this 

method are its high marking speed and high repetition rate. According to Allota, et al. 

(2016), galvanometric scanning involves deflection through two mirrors and a lens 

before the object can be marked. Moreover, the galvanometric method is flexible and 

able to transmit a higher density mark than dot marking and synchronized image 

scanning (Chen, et al. 2008). 

In general, according to Chen, et al. (2008) laser marking systems are comprised 

of a laser source, a power supply, delivery optics, a control system, and a cooling 

system. According to Dongyun and Xinpiao (2014), the control system delivers 

characters, which are converted into data describing a scanner’s voltage position. Either 

pulse width modulation (PWM) or continuous commands that control a CO2 laser in 

pulse mode or continuous mode, coupled with voltage position commands, guide the 

dual-mirror scanner to a certain angle and position simultaneously. In order to deliver 

optics, the laser beam output reaches the galvanometer-based scanning system via a 

pinhole and an expander. Then the beam direction is changed direction by the dual 

mirrors. Finally, it focused by a flat-field lens at the surface of the workpiece to engrave 

the mark (Wang, et al. 2015). 

Some laser sources used for marking applications are CO2, Nd:YAG, and 

excimer lasers (Ion, 2005). CO2 lasers utilize a gas mixture of helium, nitrogen, and 

carbon dioxide as a lasing medium, which is generally excited by an electrical gas 
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discharge. Whereas, an excimer laser is operated in the ultraviolet (UV) spectral range 

and generates nanosecond pulses. Nd:YAG (neodymium-doped yttrium aluminum 

garnet; Nd:Y3Al5O12) refers to a crystal used as an active medium for solid-state lasers. 

Qi, et al. (2003) studied a Q-switched Nd:YAG laser marking process on stainless steel 

material. Q-switching refers to a technique that enables the generation of a short optical 

pulse by a sudden switching of the cavity Q factor (a measure of the damping of 

resonator modes). Haferkamp, et al. (2002) used an Nd:YAG laser and infrared 

technology to respond to increasing product imitations and requests for protection 

against plagiarism. Infrared reflection technique in conjunction with a focal plane array 

detector was used for the detection of invisible laser markings on products shielded by a 

painting layer. Chen, et al. (2009) proposed a CO2 laser marking system to code on 

eggshells. Parker (2004) suggested a technique for marking an egg with a freshness 

date and an advertisement. CO2 lasers have good marking results especially on 

materials such as glass, plastic, paper, wooden products, and coated materials (Deprez 

et al. 2012; Chitu, et al. 2003; Kubovsky and Kacik, 2014). According to Ueda, et al. 

(1990), CO2 laser marking is faster and cheaper than YAG laser marking. However, the 

visibility of CO2 laser markings is inferior to that of YAG laser markings, except when 

viewed using optimum observation directions. In industrial operations, CO2 lasers, which 

have a wavelength of 10.6 µm, can be emitted either pulsed or in a continuous wave 

(CW). Continuous waves are delivered continuously over a given time as opposed to a 

pulsed operation, in which power is delivered in pulses of a chosen duration over a given 

time. Some industrial laser applications are shown in Table 2.1.1.  

 

Table 2.1.1. Some common applications of industrial lasers (Wangui, et al. 2012) 

Type Operating mode  Power range (Watts) Applications 

CO2 Pulsed 5 – 3000 Cutting, welding, drilling, 

marking 

CO2 Super pulsed 1000 – 5000 Cutting 

CO2 Continuous 100 – 25,000 Cutting, welding, surface 

treatment 

CO2 Continuous 3 – 100 Drilling, marking 

Nd:YAG Pulsed 10 – 2000 Cutting, welding, surface 

treatment, drilling, marking, 

micro-machining 

Nd:YAG Continuous 500 – 3000 Cutting, welding, surface 

treatment 

Nd:YAG Q-Switched 5 – 150 Drilling, marking, micro-

machining 
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The laser-material interaction has been investigated by varying laser parameters 

and analyzing the effects on either a single or multiple substrates (Carpene, et al. 2010). 

According to (Lazov, et al. 2015), laser parameters are divided into two groups, 

depending on the type of laser used:  

a. Continuous wave lasers  

The basic parameters are: wavelength, output laser power, scanning speed, beam 

quality factors, and Q-switch mode (minimum pulse duration, maximum pulse 

repetition rate, laser peak power).  

b. Pulsed lasers  

The parameters include: wavelength, average power of the laser, maximum peak 

power, pulse repetition rate, pulse duration, maximum energy per pulse, frequency 

stability, quality of the beam. 

 
2.1.2. Effects of laser radiation on surfaces 

The laser (Light Amplification by Stimulated Emission of Radiation) was 

discovered by Theodore H. Maiman, who used a flash lamp pumped through ruby 

crystal as the medium (Maiman, 1960). In recent years, the laser has been utilized for 

marking. Laser marking is the technique of marking or labeling materials using a laser 

machine. Product marking can be carried out for various purposes, included product 

identification and traceability. Laser marking is rapid, permanent, non-contact, and 

produces high-resolution images on surfaces (Ion, 2005). Laser marking commonly 

involves inducing a visible color or texture change on a surface. According to (Buchfink, 

2007; Lazov, et al., 2015) laser marking uses various marking processes, such as: 1) 

Engraving: the process of removing material due to melting and evaporation by a laser 

beam. 2) Etching or ablation: the laser beam removes a coating layer from the 

underlying base material. 3) Annealing and color change processes: the laser heats the 

workpiece, altering the color but allowing the surface to remain smooth. 4) Foaming: the 

laser beam melts a material, creating gas bubbles that reflect the light diffusely. 5) 

Carbonizing: a process that produces strong contrasts on surfaces, and is usually used 

on polymers or bio-polymers such as leather, paper, and wood. 

Laser marking systems use various lasers and optical delivery systems to mark 

products such as metals, glass, ceramics, plastics, wood, leather, and horticultural 

products. Laser marking generally prints alphanumeric characters, logos, barcodes, and 

data matrix codes on the surface of a product to specify the date of manufacture, best-

before date, serial number, and so on (Jangsombatsiri and Porter, 2007). According to 
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Markov, et al. (2015), the general advantages of laser marking techniques are: 

permanence, high speed, high economic effectiveness, high contrast inscriptions, ease 

of automation, and high reproducibility.  

Various types of lasers are necessary because of the varied parameters of 

energy absorption for different materials. Based on Fig. 2.1.1, ferrous and non-ferrous 

materials have magnificent absorption at 1064 nm, while precious metals exhibit good 

absorption at 355 and 532 nm. Plastics also absorb higher wavelengths of laser output. 

A higher absorptivity value means that more laser radiation is required for processing 

(Sobotova, 2014). According to Sobotova (2015), there are many aspects to consider 

when selecting a laser marking system for a particular application:  

a. Power density 

b. Thermal aspects: thermal conductivity, heat capacity, melting point and heat of 

vaporization 

c. Reflectivity: material, wavelength, and temperature 

 

Fig. 2.1.1. The absorption of materials vs wavelengths (Kaminski, 2011) 

 

2.1.3. Laser marking applications on horticultural products 

Laser marking of horticultural products was approved in the USA by the Food and 

Drug Administration and is generally used for labelling citrus fruits (Etxeberria, et al. 

2006b; Sood, et al. 2008). Laser marking technology was also approved in 2013 by the 

European Union (EU) in regulation 510/2013 (Commision Regulation EU, 2013). 

Longobardi (2007) integrated sorting machine and laser marking of apples and melons 
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fruits using a CO2 laser beam. The technology was suggested for composing 1D 

barcodes. Heck, et al. (2007) studied the use of an additive on products’ surfaces that 

implemented a color change. Another method of laser marking was implemented by 

Marx, et al. (2013), who marked 2D patterns or barcodes onto the surface of apples and 

rhododendron cuttings with various laser systems.   

A number of applications of marking have been developed for fruit and 

ornamental plants. Commonly, price look-up (PLU) stickers are adhered to fruits in 

packing lines, typically after pre-processing or before the final packaging. PLU stickers 

are currently used to each piece of fresh produce, and comprise a four-number code to 

allow food business operators to identify the product in order to facilitate checkout and 

inventory control. Floral industries have also utilized marking to mark potted and cut 

flowers. Sometimes the markings include various greetings (i.e. a small card) when 

delivering flowers for special occasions. However, paper labels or stickers on fresh fruits 

and ornamental plants have several drawbacks, such as that labels can easily be 

detached, lost or exchanged (Drouillard and Kanner, 1999; Edxeberria, et al. 2006a; 

Marx, et al. 2013). Recently, a number of researchers have utilized laser marking on 

horticultural products, as shown in Table 2.1.2. 

 

Table 2.1.2. Various examples of laser marking on horticultural products 

References Products Laser sources 

Drouillard and Kanner 

(1999) 

Oranges, tangerines, grapefruits, apples, 

pears, plums, nectarines, pears, kiwi 

CO2 

Edxeberria, et al. 

(2006b) 

Oranges, avocados, tomatoes, potatoes, 

peppers, cucumbers  

CO2 

Sood, et al. (2008) Tangerines CO2 

Sood, et al. (2009) Grapefruits CO2 

Edxeberria, et al. 

(2009) 

Citrus fruits  CO2 

Danyluk, et al. (2013)  Citrus fruits CO2 

Marx, et al. (2013) Apple fruits and rhododendron cuttings CO2, Excimer, 

Nd:YAG, Diode, 

Fiber laser 

Edxeberria and 

Gonzalez (2014) 

Citrus leaves CO2 

Zighelboim (2015) Coconut CO2 

Edxeberria, et al. 

(2016) 

Citrus leaves CO2 

Hoult (2017) Apple fruits and bananas Fiber laser 
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2.2. Challenges in laser marking on horticultural products  

2.2.1. Positioning of the laser 

2.2.1.1. General aspects 

The conventional laser marking process can be enhanced by modern machine 

vision. Moreover, the combination of laser systems and machine vision, which is able to 

identify the position and orientation of an object, could increase cost effectiveness and 

efficiency in manufacturing processes across a wide range of industries. Another benefit 

is its flexibility, which allows the implementation of the laser process on objects with 

various 3D surfaces (Diaci, et al. 2011), such as objects with tilted or curved surfaces 

(Chen, et al. 2009). The camera is integrated onto the laser by two different methods 

(Lehmann, 2017): 1) on-axis machine vision control:  laser deflection unit is combined 

with a camera coupled to the path of the laser beam; 2) off-axis machine vision control: 

One or more cameras (usually not more than four cameras) are installed outside of the 

deflection unit. With this function, the user can see a live image preview on a screen, 

which helps to easily position text, barcodes, or numbers directly onto the workpiece 

(Scanlab, 2017).  

A number of studies using this positioning system have been conducted. Diaci, et 

al. (2011) utilized a structured-light 3D sensor to determine the 3D surface of a marking 

object. Qi, et al. (2015) proposed a stereo-vision laser galvanometric scanning system 

for irregularly shaped objects. Beck, et al. (2016) applied an on-axis CCD camera for 

inspection and monitoring of the subtractive laser of a short-pulse fiber laser. Audouard, 

et al. (2017) implemented an off-axis CCD camera to accurately set the focusing position 

of ultrafast lasers. Due to the enhanced precision, efficiency and flexibility, the 

assistance of a camera in precise laser marking has been proven to have high potential 

as a prominent laser machining device with many applications (Qi, et al. 2015).  

Some studies have implemented combined systems (laser systems and vision 

systems) for use with agricultural products. A design of mechanical arms for laser-

guided weeding has been implemented by Ge, et al. (2013). Marx (2014) investigated 

the effects of different laser wavelengths, as well as a CCD camera, in capturing plant 

images and locating plants for weed control. The system developed achieved a mean 

positioning accuracy of about less than 2 mm. The positioning of the system for 

meristem detection by laser beam was limited by problems of overlapping, which 

occurred whenever random placement of weeds led to occluded leaves. Shah and Lee 

(2015) studied a laser weeding system for elimination of in-row weeds. The system 

consisted of a four-wheeled robot cart, a laser, a simple plug-and-play USB camera to 
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detect the plants, an encoder, a GPS, and halogen lamps. A range of HSV color space 

of the green plants was used to threshold the image between plants and soil. The 

system achieved an accuracy of 63.6% in eliminating weeds. The study could possibly 

be improved by using a lower resolution encoder and by increasing weed detection 

using shape and texture features. Xuelei, et al. (2016) studied the kinematics and statics 

analysis of a novel 4-DoF parallel device for use by a laser weeding robot. Xiong, et al. 

(2017) proposed a prototype laser weeding robot which was comprised of three 

subsystems: a robotic platform, machine vision, and a laser pointing system. In order to 

detect the weeds, three segmentations were applied: differences in area, erosion and 

dilation operations, and two shape features (solidity and compactness). However, the 

machine vision system could not distinguish plants with similar parts if they were 

overlapping. Separation of a specified object among similar objects is the most important 

task in the positioning process. This process becomes difficult when objects occlude 

each other.   

 

 

2.2.1.2. Image processing as a tool for positioning in complex plant situations 

2.2.1.2.1. Positioning and localization on leaves  

Segmentation is a challenging task because of the uncertainties about the 

background and overlapping of horticultural objects. This means that there are cases 

when the objects are not recognized because there is missing visual information. 

Recently, numerous methods for use in overlapping conditions have been proposed. 

Pastrana and Rath, (2013) proposed a model involving ellipse approximation and active 

shape to solve the problem of overlapping leaves. Wang, et al. (2013) described an 

adaptive thresholding algorithm using Otsu and Canny operators to segment a single 

leaf. Cerutti, et al. (2013) proposed a two-step active contour segmentation algorithm by 

a polygonal leaf model. This model involved analyzing the image to retrieve the contours 

of the leaf from a complex background. A study of different segmentation approaches to 

the extraction of tree leaves from natural images is given in the study of Grand-Brochier, 

et al. (2015). Chopin, et al. (2016) studied basic a-priori information about shape of plant 

leaves local image orientations to fit active contour model. Zhang, et al. (2016) studied a 

segmentation algorithm based on leaves’ similar tangential directions in order to identify 

individual leaves automatically. Wang, et al. (2017a) proposed image segmentation by 

solving overlapping leaves based on a Chan-Vese model and Sobel operator.  
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Other researchers have used shape features for pattern recognition in addition to 

colors and textures (Table 2.2.1). However, all the studies reviewed in Table 2.2.1 so far 

only apply to the detection of one leaf. According to Lee and Chen (2006), processes 

involving shape features can be classified into two main categories: a) processes that 

use the contour of a shape to extract information and b) region-based approaches that 

use a whole object region to obtain information. 

 

Table 2.2.1. Examples features used in leaves detection 

Features References 

Shape Amin and Khan, 2013; Lakshmi and Mohan, 2017  

Shape, color Satti, et al. 2013; Laresse et al. 2014; Munisami, et al. 

2015 

Shape, contours Wang, et al. 2014; Diaz, 2017 

Shape, texture Chaki, et al. 2015; Kan, et al, 2017 

 

Some studies have used different cameras to exploit plants’ shapes in order to 

constrain the plants-finding problem, as shown in Table 2.2.2. Regular 2D cameras are 

commonly used to assess plant parameters with high speed and robustness. 

Nevertheless, some systems fail to exploit plants’ full shapes due to occlusion on 

complex leaf structures in a 2D image plane.  

 

Table 2.2.2. Different cameras used in plants detection 

Sensors Methods Limitations References 

RGB 

camera 

Plant identification based on 

dendrological determinations 

Only consider single 

leave identification 

Rath, 1997 

 Ellipse approximation and 

active shape model for 

solving overlapping leaves 

Increasing area of 

overlapping (>32%) 

leads to decreasing 

identification 

effectiveness 

Pastrana and  

Rath, (2013) 

Using Otsu and Canny 

operators to extract the area 

of the target leaf 

Background overlapped  Wang, et al. 

2013 

Using active polygons for leaf 

segmentation and shape 

estimation 

Not enough 
representation of the 
diversity of colors in a 
single leaf 

Cerruti, et al. 

2013  

 Solving overlapping leaves 
based on Chan–Vese model 
and Sobel operator 

Varying lighting 

conditions 

Wang, et al. 

2017 

Scanner Identification of disease Objects analyzed by Matsunaga, et 
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symptoms on living plant 
leaves using HSB color space 

scanners are required 

to be flat  

al. 2017 

Spectral 

camera 

Leaf extraction and 

segmentation based on edge-

subtraction 

Not able to reconstruct 

occluded or partial 

leaves 

Noble and 

Brown, 2008  

Stereo 

vision and 

infrared 

Leaf segmentation and 

classification of leaves using 

3D information 

Requires manual 

adjustments of 

thresholding angle 

Aksoy, et al. 

2015; Guo and 

Xu, 2017 

3D Lidar  Plant detection and mapping The sensors have a low 

resolution  

Sanz-Cortiella, 

et al. 2011; 

Weiss and 

Biber, 2011  

ToF camera Characterization system for 

indoor and outdoor depth 

imaging of leaves’ 

Low resolution and 

expensive camera 

Kazmi, et al. 

2014 

 3D morphological traits   Li and Tang, 

2017 

Kinect 

camera 

Segmentation of individual 

leaves and plant phenotyping 

Kinect v1 did not exactly 

measure smaller 

objects, and the lowest 

distance between the 

object and the Kinect is 

50 cm 

Paulus, et al. 

2014; Wang 

and Li, 2014; 

Xia, et al, 2015; 

Andujar, et al. 

2016 

 

Commercial 3D laser scanning systems could be used as a method of recording 

3D reconstructions and acquisition of entire plants (Yan, et al. 2009). However, 3D 

acquisition can be time-consuming, expensive, and requires a huge amount of data 

when applied to large areas of plants. Moreover, a full reconstruction of all plants may 

not be necessary for the characterization of specific features of their morphologies.  

RGB-depth (RGB-D) imaging systems have been progressively studied and 

applied to agricultural products. A RGB-D camera can capture depth and color images of 

the scene simultaneously and automatically map the RGB-D data, resulting in a colored 

point cloud in a 3D spatial domain. RGB-D cameras are a low-cost (about 150 U.S. 

dollars) cheaper than conventional laser scanners (approximately ten thousands of U.S. 

dollars). RGB-D cameras have been rapidly adapted to use in several areas, particularly 

robotics, mapping, forensics, and 3D modeling (Henry, et al., 2010; Canessa, et al., 

2013). The opportunity of using consumer-grade RGB-D cameras for phenotyping trees 

was introduced by Chéné, et al. (2012). A size estimation of sweet onions was 

demonstrated by Wang and Li (2014), and the use of depth cameras to assess the 

growth state and yield of cauliflower crops was described by Andujar, et al. (2016). 
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2.2.1.2.2. Positioning and localization on fruits and stems 

Some studies locating fruit under natural conditions have been conducted. A 

binocular stereovision system was utilized to locate tomatoes by Xiang, et al. (2010). 

Song, et al. (2012) proposed a convex hull method to locate occluded apples. A machine 

vision-based method to recognize and locate ripe tomatoes was studied by Arefi, et al. 

(2011). Tanigaki, et al. (2008) studied a cherry-harvesting robot. Xie, et al. (2012) 

suggested four key methods in fruit localization: least slope variance, least distance, 

three collinear points and second-order central moment methods. However, each of the 

four methods has its drawbacks, and the combination of the four methods was time 

consuming. 

Numerous researchers have combined many features to increase the accuracy of 

fruit detection, as shown in Table 2.2.3. In general, the accuracy of machine vision 

systems in the recognition and localization of fruit can be affected by occlusions, variable 

lighting conditions, and variations in the color, shape, and size of the fruit. 

 

Table 2.2.3. Some examples of multiple features used in fruits detection 

Features Limitations References 

Color and shape  Varying lighting 

condition  

Zawbaa, et al. 

2014 

Combination of color, shape and  

texture 

Overlapping objects Yamamoto, et al. 

2014; Hosen, et 

al., 2017 

Combination of color and arc 

contours 

Natural light might 

cause strong shading 

and saturation. Variable 

size, shape and overlap 

of fruits  

Linker, et al., 2012 

 

Furthermore, some studies have used thermal and hyperspectral sensors for fruit 

detection, as shown in Table 2.2.4 and Table 2.2.5, respectively. These cameras 

typically provide better results in fruit detection than color cameras. This is because 

objects with similar colors may show different reflectances in non-visible areas. 
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Table 2.2.4. Some applications of thermal cameras for fruits detection 

Applications Thermal camera brand 
Wavelength 

range 
References 

Estimation of number and 

diameter of apple fruits in 

an orchard during the 

growing season 

Thermal camera AGEMA 

570 (Flir Systems Inc, MA, 

USA) 

7.5 – 13 µm Stajnko, et 

al. 2003 

Temporal variation in 

citrus canopy for citrus 

detection 

ThermaCAM P65HS  

(Flir Systems Inc, MA, 

USA)  

7.5 – 13 µm Bulanon, et 

al. 2008 

Image fusion of visible 

and thermal images for 

oranges detection 

ThermaCAM P65HS  

(Flir Systems Inc, MA, 

USA) 

7.5 – 13 µm Bulanon, et 

al. 2009 

 

 

Table 2.2.5. Some applications of hyperspectral cameras for fruits  

Applications Wavelength range References 

Green citrus detection  369 – 1042 nm Okamoto and Lee, 

2009 

Measuring color of vine tomatoes 325 – 985 nm van Roy, et al. 2017 

Detection of defect on green-peel 

citrus 

523 nm, 587 nm, 700 nm 

and 768 nm 

Chun-wang, et al. 

2013  

 

 

2.2.1.3. Tasks (first) 

Positioning image processing systems on complex leaves, fruits and stems is 

challenging. Implementing positioning systems for use with horticultural products is not 

an easy task (Zhao, et al. 2016). There are many different variables and segmentation 

approaches that could be optimized for a desired laser marking position. Integrating 

positioning systems with lasers is a way to increase accuracy and drive efficiency in 

horticultural uses. 
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2.2.2. Laser and marking parameters  

2.2.2.1. General aspects 

In automotive and electronics industries, some important laser parameters that 

are often investigated are: laser power, scanning speed, and frequency (Ng and Yeo, 

2001; Jangsombatsiri, 2006; Kasman 2013; Amara, et al. 2015; Brihmat-Hamadi, et al. 

2017). Other parameters, such as material properties, also affect the marking line width 

(Ng and Yeo, 2001). The depth of marking is influenced by various parameters, 

particularly: energy density, type of material, and interaction times between beam and 

material (Chen, et al. 2009). The sharpness of the marked edges influences the marking 

contrast. According to Han and Gubencu (2008), this parameter is particularly essential 

in marking barcodes, as poor edge sharpness may fail to decode a barcode. Jiang, et al. 

(2017) studied high contrast patterning on glass substrates with a 1064 nm pulse laser. 

The method consists of heating  graphite plate with a laser. Higher peak laser power or 

power density will provide a better edge resolution. Mark width refers to the width of the 

line segments that form a character. Mark width in characters is basically determined by 

the geometry of the mask and the imaging quality of the lens (Chen, et al. 2009). The 

quality of laser marking is measured based on grade visibilities (Ueda, et al., 1990), 

mark contrast (Wang, et al. 2003), and mark width and depth (Chen, et al. 2009). These 

features are usually evaluated using several techniques such as image processing, 

contrast evaluation, optical microscopy, electron microscopy, and surface roughness 

measurement devices. Acceptable levels of each of these features usually depend on 

the materials used. Marking contrast is the visual difference between the apparent 

brightness of the marked surface and the apparent brightness of the unmarked surface 

of a workpiece (Wang, et al. 2003).  

In biomedical studies, Farkas, et al. (2013) described five laser parameters that 

were applied for use with patients, namely, laser power, wavelength, spot size, pulse 

width, and cooling. A low laser power (0.001 – 0.1 Watts) has been used as a method to 

reduce pain, inflammation, and edema; to promote wound, deep tissue, and nerves 

healing; and to prevent tissue damage (Farivar, et al. 2014). Dawood and Salman (2013) 

studied the utilization of a pulse diode laser (5 mW) with a low power level to enhance 

and accelerate wound healing. Illescas-Montes, et al. (2017) investigated the effects of a 

940 nm diode laser on cultured human fibroblasts using different irradiation levels. They 

used a 940 nm diode laser at different doses of energy (0.2–1 W and 1–7 J cm
-2

) using 

continuous and pulsed mode. The best results were observed with a power of 0.2 or 0.5 

W and an energy density between 1 and 4 J cm
-2

. No difference was detected between 
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continuous and pulsed modes. Chaves, et al (2014) investigated the effects of low-

power light therapy on wound healing using lasers and light emitting diodes. The 

biological effects were dependent on the irradiation parameters, mainly wavelength and 

dose. Generally, in the ultraviolet (UV) to the near infrared (IR) spectrum, shorter 

wavelengths have a more superficial penetration because of their absorption pattern, 

and longer absorption wavelengths (650-1200 nm) have a deeper penetration in the 

tissue (see Fig. 2.2.2). The least penetrating wavelengths appear in the far UV (excimer) 

and far IR (CO2) spectrum because of their high affinity for water (Farkas, et al. 2013). 

 

 

 

Fig. 2.2.2. Illustration of the penetration depth on tissue of various common wavelengths 

(Farkas, et al. 2013) 

 

2.2.2.2. Parameters for laser application on leaves 

The interaction of a laser beam with any material depends on the laser’s 

wavelength. According to Csele (2011), due to their relatively long infrared wavelength, 

CO2 lasers are well-absorbed by some materials, such as: plastics, glass, water 

molecules and many common materials. However, when it comes to metals, shorter 

wavelengths (i.e. Nd:YAG laser, 1.06 µm) are absorbed to a higher degree. The low 
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absorption of CO2 lasers by metal is due to high density energy beams, which create 

small changes in surface temperature that tend to increase the beam coupling coefficient 

(Robert and Erik, 1997). Wöltjen, et al. (2008) studied the absorption spectra of 

Nicotiana tabacum (Solanaceae) and Echinochloa crus-galli (Poaceae).The results 

showed that absorption of spectral values above 2500 nm was close to 95%. The 

absorption of laser radiation in plant tissue is dependent on the wavelength of the laser 

used. Fig. 2.2.3 shows the absorption spectrum of a leaf in a fresh and dry state.  

 

 

Fig. 2.2.3. Absorption spectra of fresh and dried leaves (A. retroflexus) depend on the 

laser wavelength (Marx, et al. 2012) 

 

Due to the high water content of leaves, the absorption of spectral values in plant 

tissue was mainly affected by the water composition of the leaves. Langner, et al. (2006) 

determined that plant material rich in water absorbs CO2 radiation very well and can be 

heated faster. Griepentrog, et al. (2006) also found that a wavelength of 10.6 µm is 

strongly absorbed by intra-cellular and extra-cellular water, leading to a temperature rise 

in tissue water. Thus, this wavelength has a low penetration depth in plant tissue. 
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2.2.2.3. Parameters for utilizing lasers on fruits and stems 

A laser marking device has been designed for labeling citrus fruit surfaces with a 

low-energy carbon dioxide laser beam (Drouillard & Rowland, 1997). Etxeberria, et al. 

(2006a) found that the diameter and depth of penetration depressions due to laser 

marking were fairly similar on the surfaces of avocados and tomatoes, averaging 200 

µm and 25 µm, respectively, and affecting only the outermost 2-5 epidermal cells. The 

formation of pinhole depressions caused disruptions to the cuticular barrier of citruses’ 

surfaces, which could allow for the penetration of pathogenic microorganisms 

(Etxeberria, et al., 2006b). Studies of the susceptibility of laser marked tangerines (Sood, 

et al. 2008) and grapefruits (Sood, et al. 2009) to Penicillium digitatum spoilage 

unsuccessful to show the ability of decay microorganisms to colonize the marked 

surfaces of fruits. According to Bain (1957), this is due to the unique anatomical 

organization of citrus peels, which contain numerous oil glands and a loosely packed 

thick mesoderm. Sood, et al. (2008) reported that laser marking tangerines (Citrus 

reticulata) using a laser energy of 0.38 J mm
-2

 resulted in a heat-affected zone of 50 µm. 

Sood, et al. (2009) found that there was no infection risk to grapefruits after laser 

marking at 0.5 J per pattern and storage for 5 weeks at 10 °C and a relative humidity of 

65% or 95%. Danyluk, et al. (2010), studied laser labeling of mature green tomatoes 

using a CO2 laser with a maximum energy of 0.578 W per character. The results 

demonstrate that laser labeling does not support the growth of decay or pathogenic 

organisms at that energy level, even in the presence of soft-rot organisms. The same 

results were reported by Yuk, et al. (2007) on mature red tomato fruits. Danyluk, et al. 

(2013) reported that laser marking on citrus peels (0.578 W per character), combined in 

any order with waxing, does not influence the fate of Salmonella populations on citrus 

fruits. Marx, et al. (2013) studied laser marking 2D codes on apples and rhododendron 

cuttings at a low laser power (5-10 W) using a CO2 laser. Barcikowski, et al. (2006) 

found that applying 2.15 J mm
-2

 of laser energy to pine wood resulted in a heat-affected 

zone of about 70 µm.  

 
 
2.2.2.4. Tasks (second) 

Optimal laser marking parameters should be determined to avoid destroying markings 

on horticultural products. Physical interactions between the laser beam and the 

horticultural products during the marking process play an essential role in the production 

of laser marks on different types of products. In addition, the type of marks and the 

assessment of the quality of the marks depend on the purposes of the application. 
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These significant issues, including the effects of laser parameters on the quality of marks 

produced and the mark’s readability, should be understood in order to obtain the optimal 

results.  
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2.2.3. Detection and quality assessment of marking patterns 

2.2.3.1. General aspects of marking codes 

Barcodes are an important technology for use in data identification and data 

capture. Barcodes are divided into two categories: one-dimensional (1D) barcodes and 

two-dimensional (2D) barcodes. 1D barcodes typically contain parallel lines of varying 

widths and spacing. 2D barcodes are graphical images that store data vertically and 

horizontally. Based on GS1 (2018), barcodes are generally used to encode information 

or data such as serial numbers, product numbers, and batch numbers. Barcodes are 

necessary for use in product supply chains, which enable parties like manufacturers, 

retailers, transportation providers to identify and track their products. Barcodes can be 

scanned electronically using laser and camera based systems. According to Microscan 

(2018), laser scans are a better option if barcodes are extremely damaged or if high is 

projected in different symbol orientations. 

According to Aung and Chang (2014), 1D barcodes are simple to use and 

economic; however, they exhibit high data integrity corruption and poor performance. 1D 

Barcodes are easily  read by scanning the code’s lines and spaces. 1D codes represent 

short tags, however, and adding more string characters results in unbearably long and 

inefficient symbols. According to Rinkalkumar, et al. (2014), 1D barcodes must be 

scanned in one direction; if the angle of a scan line is not within a specific range, the 

information in the barcode will not be encoded correctly. However, 2D barcodes have 

wide ranges of angles for scanning. Moreover, 2D barcodes have advantages in terms 

of their ability to store large amounts of data, as well as their robust error correction 

capabilities. 

 

 
2.2.3.2. Detection of 2D codes  

A two-dimensional barcode has a high readability, even with  distorted codes and 

a small symbol size (GS1, 2018). In general, 2D barcodes are classified in two groups: 

stacked 2D barcodes (code 49 and PDF 417) and matrix 2D barcodes (data matrix 

codes and QR codes). Data matrix (DM) codes are very effective 2D barcodes that use 

a small area of square modules, which include both error detection and correction (GS1, 

2018). Numbers and characters are determined in terms of bits, represented by dark or 

light modules of an identical size. The larger the amount of bits required, the larger the 

symbol will be, increasing the density of modules in the code. A dark module and a white 

module represent binary 1 and binary 0, respectively. They are bordered by an “L finder 
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pattern”, which is enclosed by a quiet zone area on all four sides of the symbol (Figure 

2.2.4). 

 

 

Fig. 2.2.4. Data matrix structure 

 

Two adjacent sides are solid dark lines mainly used to define orientation, physical 

size, and code distortion. Two opposite sides known as “clock tracks” comprise 

alternating dark and white modules. These are primarily used not only to define cell 

structure, but also to determine the code’s physical size and distortion. The latest form of 

the DM method is known as ECC200, which uses Reed-Solomon error correction. 

Besides being advantageous in terms of readability, the ECC200 Reed-Solomon error 

correction algorithm allows the detection of partially damaged DM codes (Reed and 

Solomon, 1960), whereas traditional barcodes have no error correction capability (GS1, 

2018). 

Data matrix codes are graphical patterns. They are divided into three 

components: 1) a finder pattern, which is needed to find the symbol and its orientation in 

an image, 2) data patterns, which consist of binary modules grouped relative to the 

finder pattern, and 3) a quiet zone. In order to decode the barcode, the regions of the 

barcode are segmented by locating the finder pattern. The finder pattern can be 

detected by an edge detector based on a Hough transform (ISO/IEC 16022, 2006), 

which consists of advanced edge reconstruction methods (Chen et al. 2012). Following 

this, the barcode image quality is enhanced and returned to the original form in black 

and white. The binary values in the code are read out and error correction is generated 

to produce the decoded data. Commonly, the data matrix code is decoded using the 

ISO/IEC 16022 standard algorithm. In addition, ZXing (zebra crossing) open source 

algorithm decoder (Owen and Switkin, 2015) can also be used to read the code. 

 

1. L Finder pattern 
2. Quiet zone area 
3. Clock track 
4. Module (cell) 
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2.2.3.3. Quality standards and assessment of 2D code 

Laser marking barcodes by a process that produces reliably readable, permanent 

marks that are unaffected to harsh operational situations directly on parts has produced 

much interest in industries in recent years. Several industry associations have adopted 

direct-part marking as a technique for implementing permanent marks for identification 

purposes (Cherniavsky, 1999), as follows: The International Organization for 

Standardization (ISO), Semiconductor Equipment and Materials International (SEMI), 

Association for Automatic Identification and Mobility (AIM), Automotive Industry Action 

Group (AIAG), the Air Transportation Association (ATA), and Electronics Industry 

Association (EIA). The data matrix, a 2D matrix symbol, has been approved by many 

organizations as a standard for direct-part marking identification. According to 

International Organization for Standardization/International Electro technical 

Commission ISO/IEC 15415 standards, the quality of a Data Matrix can be determined 

by assessing the following performance measures: decoding, symbol contrast, axial non-

uniformity, grid non-uniformity and unused error correction. 

 

 

2.2.3.4. Effects of laser marking on 2D codes 

2.2.3.4.1. Effects on industrial materials 

Detection of codes after laser marking is necessary for determining the potential 

for using the codes to label certain materials. Different laser parameters and types of 

material create different appearances (NASA, 2002). Therefore, it is necessary to 

determine the best parameters and find out a relationship between critical laser 

parameters and the quality of the symbol (code). Several researchers have investigated 

the relationships between specific sets of laser parameters and their effects on different 

substrates and quality of codes. Jangsombatsiri and Porter (2007) studied different 

parameters in laser marking data matrix symbols onto carbon steel materials. They 

found that contrast and print growth factors were critical factors for the laser mark to 

achieve a higher grade. Qiu, et al. (2011) utilized an Nd:YAG laser (1064 nm) to produce 

data matrix symbols on aluminum alloys. The quality of the laser marked data matrix 

symbol was assessed based on the ISO/IEC standards. The study focused on the 

following parameters: vector step, inter-step time, laser Q-frequency and laser Q-release 

time. Lazov and Angelov (2012) described the relationship between the contrast of the 

marks on the surface of carbon tool steel and operating parameters (such as power 

density and speed). Li, et al. (2016a) studied the influence of laser parameters (fill 
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spacing, current intensity, laser scanning speed, and pulse frequency) on the barcodes 

quality laser marked onto aluminum alloys using a Q-switched lamp-pumped Nd:YAG 

laser. Li, et al. (2016b) applied direct laser marking to aluminum alloys by rasterizing 

miniature data matrix codes. According to their study, the average laser power and the 

Q-frequency have important effects on the contrast and print growth of miniature data 

matrix codes. The qualities of the code were evaluated in terms of surface roughness 

and code quality based on ISO/IEC 16022, respectively. Li and Lu (2017) investigated 

the effect of laser parameters on the symbol contrast and surface roughness of data 

matrix codes. They established a non-linear regression model in order to forecast the 

quality of the data matrix codes and the surface roughness. 

 

 

2.2.3.4.2. Effects on biological/horticultural products 

Currently, little information is available in detecting laser marked 2D codes on 

horticultural products. Marx, et al. (2013) evaluated laser marking data matrix codes on 

apples and rhododendron cuttings. The quality of the codes was measured according to 

the minimum spaces between the laser-affected areas and the infection intensities 

around the laser marked area. The parameters of the laser marking process (laser 

power, laser energy, laser wavelength, code size) considerably influence the 

representation accuracy of the code patterns used. In their study, at higher laser powers, 

the readability decreases rapidly due to damage in the heat-affected zone. Therefore, 

they recommended the use of a lower laser power (less than 5 W) with a CO2 laser in 

future studies in order to find the optimal energy for laser marking. Moreover, the study 

performed laser marking with a small code edge length, 3 x 3 mm
2
; however, no 

information was provided regarding the stability of the code’s readability during storage.  

 

 

2.2.3.5. Tasks (third) 

Maintaining the stability of readable 2D laser mark-codes on horticultural products during 

storage is challenging and requires more research. Distortions in the surface of the 

code, uneven and complex color backgrounds of horticultural products, and uneven 

lighting all impose problems on the detection of 2D codes. 
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3. RESEARCH OBJECTIVES 
 

 

Laser marking applications have been developed for horticultural products 

(Edxeberria, et al. 2006; Marx, et al. 2013; Zighelboim, 2015; Hoult, 2017). The ability 

to find, mark and evaluate products in production lines is critical for the laser marking 

of horticultural products. Positioning systems are necessary in order to increase 

accuracy and drive efficiency for the laser marking of horticultural products. Laser 

positioning systems for marking horticultural products are rare and must perform 

challenging tasks due to overlapping products and complex shapes in natural 

conditions. Because of these challenges, positioning systems must detect the 

characteristic properties of the objects, and automatically position the laser for an 

exact marking process without destroying other unmarked plants, leaves, fruits or 

stems. 

Optimal parameters for marking horticultural products are necessary in order to 

produce excellent marking quality, including the ability to mark text and pattern or 

codes. The effects of laser marking parameters on the quality of marks produced and 

mark assessment should be determined. The type and quality of the marks depend on 

the materials used. Therefore, proper understanding of the optimal laser marking 

conditions of certain materials is critical. This process lacks a standard protocol due to 

its status as a relatively new application. 

Moreover, laser marking of 2D codes on horticultural products is challenging 

due to various factors, such as: errors in marking codes due to damage on the 

products, variable lighting conditions, and low contrast. The stability of the 2D codes 

during storage is a critical issue and needs more investigation. Previously, there has 

been little discussion about the usage of laser marking of 2D codes in horticultural 

products. Hence, this study applies image processing as a tool to assess codes 

correctly.  

 

In order to achieve these goals, the objectives of this study are as follows: 

1) Finding optimum positions for laser marking of horticultural products  

2) Optimization of laser marking parameters of horticultural products to achieve an 

optimal marking result 
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In order to solve the problem, it is necessary to select examples of horticultural 

products. Horticultural products include ornamental leaves, ornamental stems, fruits, 

and vegetables. In this study, poinsettia plants (Euphorbia pulcherrima Willd. ex 

Klotzsch) and bananas (Musa spp.) are selected as possible representatives for other 

products. 

In addition to their popularity, poinsettia plants were chosen due to their 

complex leaf structures. The plant has similar leaf color and overlapping leaves. The 

extraction of the complex poinsettia leaf images are critical aspects in the 

segmentation processes. Additionally, the red bracts of the poinsettia are susceptible 

to bract brushing and abrasion. Since the plants have white bract latex in their cells, 

the interaction between laser beams and the latex is an additional benefit for this 

study.  

Banana hands were selected as samples due to their complex shapes 

compared to other fruits. The effect of dynamic changes of bananas’ colors during 

storage, from green unripe bananas to yellow mature bananas, is necessary feature 

when laser marking. Moreover, bananas’ peels are non-edible parts that allow for the 

application of optimization parameters of laser beams to it. To date, there are few 

available studies that deal with the laser marking of bananas. 
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4. MATERIALS AND METHODS 
 

4.1. Materials 

4.1.1. Poinsettia plants 

Poinsettia plants (Euphorbia pulcherrima Willd. ex Klotzsch) ‘Prestige Early 

Red’ were grown in a research greenhouse at the University of Applied Science, 

Osnabrueck. The temperature in the greenhouse was set at 20°C, and the plants were 

covered with blackout cloth from 19:00 to 09:00 h. The plants were analyzed after 8 

weeks of treatment. The samples were distributed into three parts (see Table 4.1.1).  

 

Table 4.1.1. Data sets for parameter estimation and testing 

Experiments 

Number of plants 

Parameter 

estimation/modelling 

Parameter 

testing/evaluation 

Optimization laser parameters  240 - 

Optimization laser positioning 80 80 

 

The overall samples used were 400 plants. In which only 240 of the plants were used 

for parameter optimization and no parameter testing. For the laser positioning, 80 

plants were used to create parameter estimation, and for testing used 80 other plants. 

 

4.1.1.1. Optimum laser positioning   

Plants were captured with Kinect cameras (see Fig. 4.1.1). Afterward, the 

images were analyzed via image processing by comparing two different cameras 

(Kinect V1 and Kinect V2) in order to find the right leaves for laser marking. The Kinect 

V1 and Kinect V2 cameras, which are RGB-D cameras, consist of one color and one 

depth camera. The experiment was conducted with fluorescent lamps in the 

laboratory. Direct sunlight, which disrupts correct measurement, was avoided. The 

background was set to white.   
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(a) (b) 
 

Fig. 4.1.1. Capturing poinsettia plant using Kinect camera from top view, (a) RGB 

image; (b) Depth image 

 

 

4.1.1.2. Optimum laser parameters  

The plants were marked with a CO2 laser (continuous wave) using 48 different 

parameters (see Table 4.7.1). Then, the plants were stored in the greenhouse 

(temperature at 20°C) and the characters marked on the leaf were captured by using 

an ASUS T00G camera (2304 * 4096 pixels color images). Damage on red leaves 

during storage was observed every day for 14 days of storage.  

 

 

Fig. 4.1.2. Poinsettia plants after laser marking in greenhouse 
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4.1.2. Bananas 

4.1.2.1. Optimum laser positioning 

Green mature banana hands (Musa spp., Cavendish subgroup) were collected 

from Dole® Fresh Fruit Company (Stelle, Germany). Images of banana hands were 

captured with a CCD camera (DBK41BU02.H, The Imaging Source Europe GmbH, 

Bremen-Germany) equipped with a 4.5-12.5 mm lens (Computar H3Z4512CS-IR 1/2” 

varifocal day/night lens). The resolution of each image was 1280 * 960 pixels. All 

measurements were performed from the same distance and with controlled light 

conditions. The auto exposure was adjusted; camera gain and gamma value was set 

675 and 100, respectively. Additionally, white balance for red and blue was set to 32, 

respectively; while white balance for green was set to 0. The background was set to 

be the color red (see Fig. 4.1.3). A total of 140 green mature banana hands and 60 

green mature banana fingers were used. 

 

 

Fig. 4.1.3. Example of banana hands image using CCD camera (top view) 

 

 

4.1.2.2. Optimal laser parameters 

A number of 400 green individual bananas or banana fingers (Musa spp., 

Cavendish subgroup) were collected from Dole® Fresh Fruit Company (Stelle, 

Germany). Banana fingers that were separated from the banana hands were selected 

and then marked using a continuous wave CO2 laser (wavelength: 10,6 μm, type 48-5, 

Synrad Inc., USA). In order to initiate ripening, the samples were subjected to ethylene 

treatment at 1000 μl/L for 24 h. Afterward, the samples were stored in a ripening 

chamber at 16.6°C (RH 80%) for five days in order to become a yellow color. Then, 

the samples were stored in a room with a temperature of 20°C for 4 days to simulate 

conditions of the banana supply chain from the ripening room to the market. The 
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ripening room temperatures were set on a five-day schedule to achieve a ripening 

index number of 6 (Table 4.1.2). 

 

Table 4.1.2. Banana ripening stages based on a five-day schedule 

Day Ripening index Ripening stage T (°C) 

1 2 Green, trace of yellow 16.6 

2 3 More green than yellow 16.6 

3 4 More yellow than green (fruit is almost ripe) 16.6 

4 5 Green tip (green at the end of the banana)  16.6 

5 6 All yellow 15.5 

6 6 All yellow 20 

7 6 All yellow 20 

8 6 All yellow 20 

9 7 Yellow (flecked with brown) 20 

 

Images of the codes on the bananas were acquired with a CCD camera 

(DBK41BU02.H, The Imaging Source Europe GmbH, Bremen-Germany) equipped 

with a 4.5-12.5 mm lens (Computar H3Z4512CS-IR 1/2” varifocal day/night lens). The 

setup of the camera and the background of the objects were based on the sub-section 

of 4.1.2.1. The distance between the camera and bananas was set to 5 cm. 

 

 

4.2. Laser systems 

4.2.1. Technical data  

A CO2 laser (Synrad Inc., USA), which is a continuous wave laser, was used to 

generate data matrix codes and characters on horticultural plants. Table 4.2.1 shows 

general technical information of the laser. The laser beam was focused and positioned 

using a marking head (Marking head SH3-200C, galvanometer-operated mirrors, 

Synrad Inc., USA). WinMark pro software (Synrad Inc., USA) was used in order to 

create files containing a variety of objects including text and 2D barcodes. The 

software is capable of controlling every feature of the laser marking process, including 

altering laser parameters. The specifications of the marking head are shown in Table 

4.2.2. 
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Table 4.2.1 Specifications of the CO2 laser 

 Information 

Model 48-5 (S)W 

Output power 50 W 

Wavelength 10.57 – 10.63 µm 

Mode quality TEM00, 95% purity; M
2
<1.2 

Rise time < 150 µsec 

Beam diameter 3.5 mm 

Beam divergence (full angle) 4 mR 

Power stability, from cold to start (guaranteed) ± 5% 

Polarization Random 

Cooling Water 

Heat load (max) 800 W 

Flow rate, water (18-22°C) 1.5 GPM 

Input voltage / Current 30 VDC / 28 A 

Dimensions (mm) 886 x 135 x 114 

Weight 20 kg 

 

 

Table 4.2.2. Specifications of SH series marking head 

 Information 

Model number SH3-200C 

Field size (mm) 110 x 110 

Spot size at 50% (µm) 176 

Spot size at 1/e
2
 (µm) 250 

Scan angle (degrees) 48, diagonal 

Bean angle to surface normal, max 

(degrees) 

14 

Effective focal length (mm) 200 

Scanning aperture (mm) 15 

Input beam diameter at 1/e
2
 (mm) 3-4 

Continuous input power (W) 65 

Input power 28-30 VDC at 3 A maximum 

Size (mm) 140 x 250 x 250 

Weight (kg) 5 

 

 

4.2.2. Implementation of the laser process 

A computer was connected to the laser in order to control the power, velocity 

and direction of the laser beam. The distance from the laser scanning system to the 

object’s surface was set to 246 mm (flat-field lens). Manual positioning of the lifting 

table was used in order to ensure a similar working distance between the laser 
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scanner and the poinsettia leaves (Fig. 4.2.1). In order to continuously ensure a similar 

distance from the bananas’ surfaces to the laser scanner focus system, an automatic 

lifting machine was developed (Fig. 4.2.2). The machine includes a stepper motor, 

three laser diodes and three photodiode sensors. The diode system was used to steer 

the lifting machine to the exact right object-laser distance by sending a signal to the 

stepper motor to move up and down.  

 

 

 

Fig. 4.2.1. Laser marking setup on poinsettia plants: CO2 laser, laser scanner, manual 

lifting table and computer-based control 

 

 

Fig. 4.2.2. Laser marking setup on bananas: CO2 laser, laser scanner and focus 

system, lifting machine and computer-based control 
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4.2.3. Calculation of the laser output 

The laser power output (W) was checked by developing a water calorimeter 

chamber (Fig. 4.2.3) and by comparing the result to a CO2 laser power meter (Fig. 

4.2.4). The CO2 laser power meter is a calorimeter-type power meter which measures 

laser power by means of its time exposure. 

 

Fig. 4.2.3. Water calorimeter systems 

 

 

Fig. 4.2.4. The use of a CO2 laser power meter (Mahoney, USA)  

 

Water in a calorimeter chamber was placed in the path of the unfocused laser 

beam (see Fig. 4.2.3). The laser machine was turned on for 180 seconds. After the 

laser was turned off, the digital thermometer values (GMH 3710, Greisinger Germany) 

continued to change. At the point when the thermometer values stopped changing, the 

laser 

thermometer 

styrofoam 

water 25 ml 
borosilicate glass 

weighing of water, glass 
and styrofoam lid 

housing of the 
balances 

analytical 
balances 

CO2 laser power meter 

probe 0-100 W  
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maximum temperature was noted. Directly following this, the amount of water in the 

glass was weighed using analytical balances (Cubis® analytical balance, Sartorius). 

The change in mass of the water before and after lasering indicates water loss due to 

laser heating effects. The total heat energy (Qtotal) was calculated by using the 

following equations:   

𝑄𝑡𝑜𝑡𝑎𝑙 =  𝑄𝑤𝑎𝑡𝑒𝑟 + 𝑄𝑔𝑙𝑎𝑠𝑠 + 𝑄𝑤𝑎𝑡𝑒𝑟 𝑣𝑎𝑝𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛   (4.1) 

The amount of heat required to rise temperature can be expressed as: 

𝑄𝑤𝑎𝑡𝑒𝑟 = 𝑚 ∗ 𝑐𝑝𝑤𝑎𝑡𝑒𝑟 ∗  ∆𝑇      (4.2) 

𝑄𝑔𝑙𝑎𝑠𝑠 = 𝑚 ∗ 𝑐𝑝𝑔𝑙𝑎𝑠𝑠 ∗  ∆𝑇      (4.3) 

𝑄𝑤𝑎𝑡𝑒𝑟 𝑣𝑎𝑝𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝐻𝑣 ∗  ∆𝑚     (4.4) 

Where: 

Q is heat energy (J), m is mass of substance (kg), Cp is specific heat (J kg
-1 

K
-1

), ΔT is 

the change in temperature (K), Hv is the heat of vaporization to convert 1 g of water at 

100°C to 1 g of steam at 100°C (J g
-1

) and Δm is the change in mass (g). 

 

4.3. Cameras and image acquisition tools 

4.3.1. RGB image acquisition  

Marked bananas images were captured with a CCD camera (DBK41BU02.H, 

The Imaging Source Europe GmbH, Bremen-Germany) equipped with a 4.5-12.5 mm 

lens (Computar H3Z4512CS-IR 1/2” varifocal day/night lens). All samples were 

measured from the same distance and with controlled light conditions (Fig. 4.2.5). The 

image acquisition was performed with the IC Capture ver. 2.0 TIS software (The 

Imaging Source Europe GmbH, Bremen-Germany).  

 

 

Fig. 4.2.5. Lighting setup 

Top view Side view 

Halogen lamp Object Camera 
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4.3.2. Hyperspectral image acquisition 

Images were acquired using a hyperspectral imaging camera (Helios, EVK DI 

Kerschhaggl GmbH Austria). The camera has 240 * 240 pixels with a spectral 

resolution of 2 nm and a spectral range from 1,100 nm to 1,700 nm. The acquired 

images were corrected with a white and dark reference. The corrected image (Ic) is 

calculated as follows:   

𝐼𝑐 =
𝐼ℎ−𝐼𝑑

𝐼𝑤−𝐼𝑑
          (4.5) 

where Ih is the acquired hyperspectral image, Id is the dark image recorded by closing 

the camera lens completely and Iw is the white reference image with 99% reflectance 

using a teflon white board. 

 

 

4.3.3. 3D image acquisition 

According to Andujar, et al. (2016), the Kinect V1 camera is a RGB camera 

with a depth camera containing a structured-light device integrated, an infrared 

emitter, and an infrared depth sensor. The infrared camera is equipped with an 850 – 

1100 nm bandpass filter, which captures the depth of the image. The monochrome 

depth-sensing video stream has an 11-bit depth, which provides 2,048 levels of 

sensitivity. The RGB camera has a 400 – 800 nm bandpass filter. The Kinect can be 

switched to near mode, which provides a range of 0.5 – 3 m. In normal mode the 

camera has a minimum limit of 0.8 m and a maximum limit of 4 m needed to work. The 

depth accuracy error resolution is typically 10 mm (Chéné et al. 2012).  

The Kinect V2 camera is based on the time-of-flight (ToF) principle, whereas 

the previous Kinect V1 device uses structured light to reconstruct the third dimension. 

The Kinect v2 has a depth resolution of 13-bit depth, which provides 8,192 levels of 

sensitivity. The camera is able to acquire at a maximum frequency of 30 Hz. The 

operating field is defined by a depth range of 0.5 – 4.5 m and a 70° horizontal and 60° 

vertical view angle. The average depth accuracy error resolution is from 2 mm to more 

than 4 mm (Yang, et al. 2015), depending on the distance and tilt angle. A larger tilt 

angle and greater distance lead to a lower depth resolution (Yang, et al. 2015).  
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Fig. 4.3.1. Kinect V1 (left) and Kinect V2 (right) 

 

4.4. Image processing tools  

4.4.1. Image processing software tools 

 Image analysis was carried out with the software package Halcon 12 (MVTec 

GmbH, Munich). In order to acquire real-time images from the Kinect V1 and Kinect 

V2, a custom image acquisition application was developed by capturing the RGB and 

Depth images (Fig. 4.4.1 and Fig. 4.4.2). Algorithms were written in C# and WPF 

(Windows Presentation Foundation). A Software Development Kit (SDK), provided by 

Microsoft®, provides the possibility of writing algorithms to control the Kinect; in 

particular, to acquire and save the depth stream and the color stream via a USB 

adapter.   

 

 

Fig. 4.4.1. Image acquisition application for Kinect V1 camera 
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Fig. 4.4.2. Image acquisition application for Kinect V2 camera 

 
 

The Kinect V2 adopts ‘Time of Flight’ method instead of ‘light coding’ method of the 

Kinect V1 for the depth measurements. The image acquisition application for Kinect 

V2 uses a different sensing method for depth measurement and provides higher 

image resolutions. Details comparison between Kinect V1 and Kinect V2 are shown in 

Table 4.2.3 below. 

 

Table 4.2.3. Specifications of Kinect V1 and Kinect V2 

 Kinect V1 Kinect V2 

Resolution of color image (pixels) 640 * 480  1920 * 1080 

Resolution of depth image (pixels) 640 * 480 512 * 424 

Field of view of color image (°) 62 * 48.6 84.1 * 53.8 

Field of view of depth image (°) 57.5 * 43.5 70.6 * 60 

Method of depth measurement Light coding Time of Flight 

Working range (m) 0.5 ~ 4 0.5 ~ 4.5  
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4.4.2. Halcon operators used 

The Halcon image processing software was utilized to develop the algorithms in this 

study. Some Halcon operators are shown in Table 4.4.1.   

 
Table 4.4.1 Halcon operators used (Halcon MVTec, 2014) 

Operators Function 

affine_trans_region Applying an arbitrary affine 2D transformation to 
regions 

area_center Calculating the area and the center of the input 
regions 

binary_threshold Segmenting an image using binary thresholding 
(Otsu method) 

connection Determining the connected components of the 
input regions given in region 

create_data_code_2d_model Creating a model of a 2D data code class 

decompose3 Converting a 3-channel image into three one-
channel images with the same definition domain 

diameter_region The operator maximal distance derived between 
two boundary points of a region 

distance_transform Computing the distance transformation of a 
region 

eccentricity  The operator shape features derived from the 
ellipse parameters 

edges_sub_pix  Extracting sub-pixel precise edges using 
Deriche, Lanser, Shen, or Canny filters 

elliptic_axis Calculating the parameters of the equivalent 
ellipse 

fill_up Filling up holes in regions 

find_data_code_2d Detecting and read 2D data code symbols in an 
image or train the 2D data code model 

gen_ellipse Creating an ellipse 

gen_polygons_xld Approximating XLD contours by polygons 

gen_rectangle2 Creating a rectangle of any orientation 

get_data_code_2d_objects Accessing iconic objects that were created 
during the search for 2D data code  

get_data_code_2d_results Getting the alphanumerical results that were 
accumulated during the search for 2D data code  

get_data_code_2d_results Getting the alphanumerical results that were 
accumulated during the search for 2D data code  

get_lines_xld Returning an XLD polygon's data (as lines). 

hom_mat2d_identity Generating the homogeneous transformation 
matrix of the identical 2D transformation 

hom_mat2d_scale Adding a scaling to a homogeneous 2D 
transformation matrix 

hom_mat2d_translate Adding a translation to a homogeneous 2D 
transformation matrix 

intersection Calculating the intersection between two regions 
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line_position Calculating the center of gravity, length, and 
orientation of a line 

min_max_gray Determining the minimum and maximum gray 
values within regions 

move_region Translating the input regions by the vector given 
by (row, column)  

reduce_domain Reducing the definition domain of the given 
image to the indicated region 

select_lines_longest Selecting the longest input lines 

select_shape The operator  chooses regions based on shape 

set_data_code_2d_param Selecting parameters of the 2D data code model 

set_tposition Setting the position of the text cursor 

smallest_rectangle2 Calculating as smallest surrounding rectangle 
with any orientation 

trans_from_rgb Transforming an image from the RGB color 
space to an arbitrary color space 

tuple_max Returning the maximal element of a tuple 

tuple_real Converting the input tuple into a tuple of floating 
point numbers 

watersheds_threshold Extracting watershed basins from an image 
using a threshold 

write_string Printing text in a window 

 
 
4.5. Statistics and hardware data processing 

The collected data were analyzed using software Sigma Plot (ver. 11.0, Systat 

software, San Jose, CA, USA). A bar chart, linear regression and sigmoid regression 

analysis were used to analyse the main variables. Image analysis was carried out 

using a laptop with Intel® Core™ i7-4510U processor, 2.6 GHz, 12.0 GB RAM, 64-bit 

operating system. 

 

 



4. Materials and methods 
     

38 

 

4.6. Implementation of the investigation for optimum laser positioning 

4.6.1. Experiment and quality assessment for poinsettia 

4.6.1.1. Combined RGB-Depth 

4.6.1.1.1. Color segmentation based depth image 

Since laser marking only considers the colored part of poinsettias from a top 

view, called colored bracts (modified leaves), the green part was separated from the 

plants’ depth image. For this purpose, RGB-depth image segmentation steps were 

applied (Fig. 4.6.1).   

 

 

Fig. 4.6.1. Separation of green leaves the depth image of poinsettia leaves 

 

The RGB image and depth image were aligned to compensate for differences 

in image size. The Kinect camera can capture color and depth images simultaneously. 

Although the resolutions are the same, in practice a raw match of the color and depth 

images is not aligned properly. There is a significant difference in size and some 

differences in position. Since the difference takes place in 2D image space, a rigid 

affine transformation from points and angles is appropriate between the two images. 

RGB image  Depth image 

Segmenting image from its 
background and green 
leaves:  
a. Transform RGB image into 

i1i2i3 color space 
b. Otsu’s threshold using i3 

channel 

Segmenting image from its 
background: 
a. Otsu’s threshold 
  

Alignment 

Intersection  
(RGB image ∩ Depth image) 

Image capturing (Kinect camera) 

Depth image with only color (red) leaves 

Alignment 
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This transformation consisted of a rotation matrix, a translation vector from a 

correspondence point and corresponding angles, and a scaling by scale factors along 

the x-axis and y-axis. The following formula shows the chain of transformation 

matrices (MVtec, 2014): 

 

HomMat2D = [
cos (𝑃ℎ𝑖) −sin (𝑃ℎ𝑖) 0

sin (𝑃ℎ𝑖) cos (𝑃ℎ𝑖) 0
0 0 1

] ∗ [
1 0 𝑇𝑥
0 1 𝑇𝑦
0 0 1

] ∗ [
𝑆𝑥 0 0
0 𝑆𝑦 0
0 0 1

] (4.6) 

 

Where: 

HomMat2D = homogeneous 2D transformation matrix 

Phi  = rotation angle  

Tx   = translation along x-axis 

Ty  = translation along y-axis 

Sx  = scale factor along x-axis 

Sy  = scale factor along y-axis 

 

At the same resolution, the depth image has a relatively bigger size than the 

color image. Hence, the depth image was transformed into the color image using 

Equation [4.6], whereas the color image was set as the fixed point of the 

transformation. This strategy was performed in order to avoid the deterioration of 

image quality due to 2D transformation, i.e., scaling. In order to find the scale factor 

ratio, the region of the color image was divided by the region of the depth image.  

The pixels in RGB color space were transformed into the i1i2i3 color space. 

The i3 channel was chosen to allow easier segmentation between red leaves and 

green leaves. According to Meyer, et al. (1998), the i3 channel is usually referred as 

the ‘‘excess green index” and has been used for direct segmentation of plants. This 

transformation simplified the color segmentation and only the i3 channel was applied. 

The i1i2i3 color space was calculated from the RGB color space by the following 

equation (proposed by Ohta et al. 1980).  

 

[
𝑖1
𝑖2
𝑖3

] = [
0.333 0.333 0.333

0.5 0.0 −0.5
−0.25 0.5 −0.25

] ∗ [
𝑅
𝐺
𝐵

]        (4.7) 
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Plant leaves and background objects (i.e. RGB image and depth image) were 

extracted according to Otsu’s thresholding method (Otsu, 1979). Otsu thresholding is 

an optimal threshold for binarizing an image with a bimodal intensity histogram. 

Subsequently, the regions of both images were intersected. In order to determine the 

segmentation performance of the algorithm, 80 poinsettia plants were evaluated. The 

successful extraction of the green leaves from the depth images using the proposed 

algorithm was calculated in percentages.   

 

 

4.6.1.1.2. Depth image segmentation based on distance transform watershed method  

Segmentation of complex leaf images is not an easy task with standard RGB 

images, because the leaves are overlapped and poorly contrasted with each other 

(Chéné, et al. 2012). Depth images can be more easily segmented than RGB images 

and allow for recognizing objects in terms of similar color. The next step is to split the 

objects that are located at different depths. In this experiment, poinsettia plants were 

captured using Kinect V1 and Kinect V2, respectively. Microsoft Kinect® cameras 

were used to provide RGB-D information. The segmentation of the images was carried 

out by a distance transformation and watershed algorithm.  

A distance transformation is defined as an operation that converts a binary 

image to an image where each element has a value that approximates the distance to 

the nearest feature element (Borgefors, 1984). Generally, distance metrics are used 

for different situations, such as city-block, chessboard and Euclidean distance. The 

Euclidean metric is one of the most appropriate metrics and is an adequate model for 

numerous geometrical facts and is used in many applications, since it is radially 

symmetric and virtually invariant to rotation (Wang and Tan, 2013). Therefore, a 

Euclidean metric parameter was selected for calculating the distances. The exact 

distance between two points with coordinates of (i1, j1) and (i2, j2) can be calculated 

from the Euclidean distance transformation formula below (Danielsson, 1980): 

 

Euclidean (i, j) = √(𝑖1 − 𝑖2)2 + (𝑗1 − 𝑗2)2     (4.8) 

 

Where, in Euclidean plane, if i = (i1, i2) and j = (j1, j2), then the distance between two 

pixel coordinates is denoted as [i1, j1] and [i2, j2]. This formula is equivalent to the 

Pythagorean Theorem. 
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By convention, binary 0 is associated to black, and 1 to white. Hence, we have 

a foreground or object represented by all white pixels. The background is represented 

by black pixels. Figure 4.6.2 shows a numerical example of Euclidean distance with 

the straight-line distance between two pixels. The corresponding pixel in distance 

transformation shows the smallest distance between each pixel in the object to the 

nearest pixel in the background.   

 

 

Fig. 4.6.2. Illustration of Euclidean distance transform 

 

The term “watershed” indicates a ridge that is used to divides areas drained by 

different river systems. Therefore, the name of this technique is “watershed-based 

segmentation.” According to Roerdink and Meijster (2000), the watershed 

segmentations compute catchment basins and ridgelines which also known as 

watershed lines, where catchment basins correspond to image regions and watershed 

lines correspond to the region boundaries (Fig. 4.6.3).  

  

 

Fig. 4.6.3. Illustration of watershed segmentation, local minima of gray level yield 

catchment basins, and local maxima define the watershed lines 

 

Catchment 
basin 

Watershed Watershed 
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In order to detect the potential basins, an appropriate threshold for each object 

region should be defined. A Halcon image processing program was performed to 

compute the watershed segmentation. According to MVTec (2014), the watershed is 

eliminated and the two basins are merged if: 

 

𝑚𝑎𝑥[𝑊 − 𝐵1, 𝑊 − 𝐵2] < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑      (4.9) 

 

Where, B1 and B2 are the minimum gray values of two neighboring basins. W is the 

minimum gray value of the watershed that splits the two basins depending on every 

image. The threshold value is set 20. It is calculated based on parameter 

estimation/modelling results. 

 

The algorithm extracts watersheds and basins from an image. The 

watershed algorithms segment an image according to the topology of the gray values. 

Higher gray values correspond to “mountains,” whereas lower gray values correspond 

to “valleys.” A watershed is a single region per input image, while basins contain a 

separate region for each basin. The basins are successively combined if they are 

separated by a watershed that is lower than the threshold.  

Finally, the corresponding basins were used to split the connected regions by 

intersecting the basins with the selected regions. A leaf was selected for the purpose 

of laser marking. Since poinsettia leaves is nearly elliptical leaves, two criteria for 

selecting the best leaf for marking are calculated: a) shape factor ratio (SF), and b) the 

maximum diameter of the leaf. The shape factor ratio is denoted by the following 

equation: 

 

𝑆𝐹 =  
𝐿𝑒𝑎𝑓 𝑎𝑟𝑒𝑎

𝐸𝑙𝑙𝑖𝑝𝑠𝑒 𝑎𝑟𝑒𝑎 
              (4.10) 

𝐸𝑙𝑙𝑖𝑝𝑠𝑒 𝑎𝑟𝑒𝑎 =  𝜋 ∗ 𝐴 ∗ 𝐵       (4.11) 

 

Where, A and B is major radius and minor radius, respectively.  

The maximum diameter is defined as the maximum distance between two boundary 

points of a leaf region (MVTec, 2014). 
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Fig. 4.6.4. Illustration of shape factor ratio (SF) of two different types of poinsettia 

leaves. (A) major radius of ellipse; (B) minor radius of ellipse; (C) maximum diameter 

of leaf region 

 

 

Eighty successfully detected poinsettia leaves were analyzed according to the best 

leaf classification based on Fawcet (2006). The classification specified a classifier and 

the test set, a two-by-two confusion matrix (contingency table), which can be 

constructed representing the dispositions of the set of instances (see Fig. 4.6.5). 

There are four possible results:  

1) If the instance is positive and it is classified as positive, it is calculated as a true 

positive  

2) If the instance is positive and it is classified as negative, it is calculated as a false 

negative  

3) If the instance is negative and it is counted as negative, it is counted as a true 

negative  

4) If the instance is negative and it is classified as positive, it is calculated as a false 

positive  

 

Fig. 4.6.5. Confusion matrix (Fawcet, 2006) 

SF = 0.95 SF = 0.93 

Ellipse area 

Leaf area 
A 

B C 
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In this study, the detected of poinsettia leaves were grouped based on four possible 

results, as follows: 

I. True positive  : a correctly identified leaf  

II. False positive  : overlapping leaves detected as a leaf  

III. True negative  : no leaf and no overlapping leaves detected as  

  a leaf  

IV. False negative : a partial leaf is detected 

 

 

4.6.1.2. The usage of main leaf skeleton  

In this study, individual leaves were automatically identified from images of 

horticultural crops. This identification refers to the thickest and longest venation in a 

leaf as the main skeleton, as shown in Fig. 4.6.6.  

 

 

Fig. 4.6.6. Main skeleton and branches of poinsettia leaf 

 
This identification system was comprised of several steps, as shown in Fig. 

4.6.10. RGB images were captured and converted into L*a*b channels. The a* 

channel was chosen and Otsu’s method (see Eq. 4.5.7) was selected to segment the 

foreground and background automatically. Unwanted small objects (noise) were 

removed. The color image was intersected by the region of interest (called the 

reduced domain). The Red channel was used to extract edge contours. Canny edge 

detection (Canny, 1986) was chosen and hysteresis thresholding values were selected 

in order to have less detail in the edges. The general stages of the Canny edge 

detector are:  

a. Smoothing: blurring of the image to remove noise  

The Gaussian smoothing filter was used to remove image noise. The filter is 

denoted as: 

  

main skeleton 
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exp(𝑥, 𝑦) =  
1

2𝜋√𝜎
𝑒𝑥𝑝 (−

𝑥2 + 𝑦2

2𝜎2
) 

           (4.12) 
Where,  

x = the distance from the origin in the horizontal axis  

y = the distance from the origin in the vertical axis  

σ = the standard deviation of the Gaussian distribution 

 

b. Finding gradients (Canny edge detection): Finding the edge strength (magnitude) 

by computing the gradient of the image using a standard Sobel edge operator. The 

Sobel operator implements a 2D spatial gradient measurement on the image.  

 

 

Fig. 4.6.7. Kernels used in Sobel operator 

 

The operator uses a pair 3 * 3 kernel (see Fig. 4.6.7), Gx and Gy are gradients in 

the x- and y-directions, respectively. The magnitude and angle of the directional 

gradients calculated as follows: 

 

The magnitude of gradient:  |𝐺| = √𝐺𝑥2 + 𝐺𝑦2    (4.13) 

Approximate strength: |𝐺| = |𝐺𝑥| + |𝐺𝑦|     (4.14) 

The orientation of the edge: arctan (
|𝐺𝑦|

|𝐺𝑥|
)     (4.15) 

 

b.1. Non-maximum suppression: Only local maxima should be noticeable as edges  

The image magnitude produced thick edges; therefore non-maximum suppression 

was performed to thin out the edges. Fundamentally, this was done by preserving 

all local maxima in the gradient image, and removing everything else. Fig. 4.6.8 

shows points along the curve where the magnitude is biggest. This can be done 

by looking for a maximum along a slice to the curve. 
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Fig. 4.6.8. Illustration of the non-maximum suppression  

Where, (x’’,y’’) and (x’,y’) are the neighbors of (x,y) along the direction to an edge.  

 

b.2. Double thresholding: potential edges are determined by hysteresis thresholding.  

This technique applied dual thresholding followed by a connected component 

analysis to preserve weak foreground pixels (see Eq. 4.16).  

 

𝐺𝑡(𝑥, 𝑦) = {

𝐹𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 (𝑠𝑡𝑟𝑜𝑛𝑔)  𝑖𝑓 𝐺𝑡(𝑥, 𝑦) >  𝑇ℎ𝑖𝑔ℎ

𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑                     𝑖𝑓 𝐺𝑡(𝑥, 𝑦) <  𝑇𝑙𝑜𝑤

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑤𝑒𝑎𝑘)                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (4.16) 

 

Where, the image pixels were compared to two thresholds (i.e. Tlow and Thigh). Tlow 

and Thigh manually adjusted based on the modelling images data sets. The results 

for Tlow and Thigh are 1 and 5, respectively. Let Gt (x, y) be the pixel at time t and 

location (x, y). 

 

Explanation of equation (4.16): 

1) If the gradient at a pixel is above Thigh, declare it an ‘edge pixel’ 

Pixels above the upper threshold (Thigh) are considered strong foreground. 

2) If the gradient at a pixel is below Tlow, declare it a ‘non-edge-pixel’ 

Pixels below the lower threshold (Tlow) are considered background and 

discarded. 

3) If the gradient at a pixel is between Tlow and Thigh then declare it an ‘edge pixel’ 

if and only if it is connected to an ‘edge pixel’ directly.  

(x’, y’) 

(x , y) 

(x’’, y’’) 
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Intermediate pixels were categorized as weak candidates or weak foreground 

pixels. If a weak pixel was connected directly or through a path to a 

foreground, it was preserved by changing it to a foreground pixel. Otherwise, it 

was made a background pixel and discarded.  

 

b.3. Edge tracking: final edges are defined by suppressing all edges that are not 

connected to a very certain (strong) edge. 

 

c. Ramer approximation method 

The contour was represented as a polygon when it fit the edge points with a 

sequence of line segments. The Ramer approximation method (Ramer, 1972) was 

chosen to simplify a polygon by reducing the number of points by use of a threshold. 

The smaller the threshold, the closer the polygonal fit will be to the original data. 

However, in this study, more straight-line fit segments will be required. The Ramer 

method offered an iterative method which starts with an initial segmentation and splits 

the segment at the point which had the greatest distance from the corresponding 

segment, unless the approximation error was no more than the pre-specified 

threshold, as illustrated in Figure 4.6.9.  

 

d. The longest line 

The longest line was selected according to the longest input lines by 

subtracting coordinates between ending points and starting points. In order to place 

characters on a leaf during laser marking, a larger area of the leaf is required. 

Therefore, we assume that the longest main leaf skeleton represents a larger leaf. 
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Fig. 4.6.9. Simplifying a curve using Ramer approximation. (1-6) A curve (blue line) 

together with the initial approximation (black line) is shown. First step: As the 

maximum distance d1 between the curve and its approximation (marked red) is larger 

than threshold (𝑡), the line is subdivided. Second step: The lower line is subdivided 

again (d2 > 𝑡). For t, the standard Halcon (see MVTec, 2014) value was used. The 

final Ramer approximation is illustrated at number (6) 

d1 

d2 

(1) (2) 

(3) (4) 

(5) (6) 
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Fig. 4.6.10. Overview of leaf identification system 

 

Poinsettia plants were captured by the camera. The camera could produce 1280*1024 

pixel color images. The color images were analyzed using the proposed algorithms 

(see Fig. 4.5.18). Three analyses were performed to examine the successful 

identification of this system, as follows: 

a) The longest five main leaf skeletons detected 

The longest five main leaf skeletons detected were identified using the Halcon v12 

image processing software. The successful results were measured as percentages 

based on Equation (4.17) as follows:  

 

𝑆𝐿 (%) =
number of correct classification

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 
∗ 100%     (4.17) 

Where SL is the percentage of main leafs detected successfully 

 

b) The longest main leaf skeleton detected  

Color images 
Obtaining R, G, B channel and 
convertion to L*a*b* channel 

Removing noise 

Automatic segmentation of foreground 
region using a* channel 

Reducing domain of an 
image, R channel was chosen 

Canny edge detection and 
hysteresis thresholding 

Generating contours by polygon  
(Ramer algorithm) 

Selecting the longest line 
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The longest main leaf skeleton was detected using the Halcon image processing 

software. The classification of the detected leaf in the test set was performed using a 

confusion matrix (Fawcet, 2006), see Fig. 4.6.5. The detected leaves were grouped 

based on four possible results, as follows: 

i. True positive  : main skeleton correctly identified  

ii. False positive  : branches detected as main skeleton  

iii. True negative  : no main skeleton and no branches detected as main  

                                       skeleton  

iv. False negative : line detected is too short but it represents a larger leaf 

 

 

c) Effect of different orientation  

In order to understand the effect of different orientations on the detection of 

leaves, a reliable leaf identification system should take this issue into consideration. In 

this section, the camera was used to capture the first image (color image) and move 

the object sample to slightly different orientations (such as: 0°, 90°, 180° and 270°) to 

obtain the second, third and fourth images. 
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4.6.2. Experiment and quality assessment for bananas 

4.6.2.1. Pre-processing and background removal 

The steps in the algorithm for removing background are shown in Figure 

4.6.11. An individual color image was captured by a CCD camera. The process of 

background removal was achieved by accessing R, G and B chromatic components 

from the color image. However, this color space has the disadvantage of being very 

sensitive to changes in lighting. Converting the RGB channels to CIE-Lab channels 

avoids the sensitivity by increasing the accuracy of color segmentation. The CIE-Lab 

(1976) color is organized as shown in Figure 4.6.12.  

 

 

Fig. 4.6.11. The process of removing the background of single banana fruit 

 

 

Image acquisition 

Obtaining R, G, B 
channels 

Converting RGB to 
L*a*b* channels 

Otsu’s thresholding using a* 
channel 

Color image 

Removing noise 

Filling the holes 

Banana image without 
background 
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Fig. 4.6.12. CIE-Lab color space structure 

 

The RGB color space was converted to L*a*b* color space by the following set 

of equations (MVtec, 2014): 

(
𝑋
𝑌
𝑍

) = [
0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

] [
𝑅
𝐺
𝐵

]   (4.18) 

 

𝐿∗ = 116 [𝑓 (
𝑌

𝑌𝑤
)] − 16      (4.19) 

 

𝑎∗ = 500 [𝑓 (
𝑋

𝑋𝑤
) − 𝑓 (

𝑌

𝑌𝑤
)]      (4.20) 

 

𝑏∗ = 200 [𝑓 (
𝑌

𝑌𝑤
) − 𝑓 (

𝑍

𝑍𝑤
)]      (4.21) 

 

𝑓(𝑡) =  {
𝑡

1

3                      𝑖𝑓  𝑡 >  (
6

29
)

3

1

3
(

29

6
)

2

𝑡 +
4

29
    𝑖𝑓 𝑡 ≤  (

6

29
)

3    (4.22) 

 

Where, 𝑋𝑤,  𝑌𝑤 , 𝑍𝑤 are tristimulus of CIE-XYZ values with reference to the white spot. 

 

(

𝑋𝑤

𝑌𝑤

𝑍𝑤

) =  [
0.9504
1.0000
1.0887

]       (4.23) 
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In order to find the optimal thresholding value between two peaks 

automatically, Otsu’s method was selected (Otsu, 1979). The Otsu method is based 

on establishing the optimal threshold that minimizes within-class variance. The within-

class variance is the sum of the object of interest and background variances multiplied 

by their associated weights, as follows: 

 

𝜎𝑤
2 (𝑡ℎ) =  𝑤𝐵(𝑡ℎ) 𝜎1

2(𝑡ℎ) + 𝑤𝐹(𝑡ℎ)𝜎2
2(𝑡ℎ)     (4.24) 

 

Where: 

𝜎𝑤
2= within-class variance 

𝜎1
2= the variance of the pixels in the background (below threshold) 

𝑤𝐵= the weight of the background 

𝜎2
2= the variance of the pixels in the foreground (above threshold) 

𝑤𝐹= the weight of the foreground 

 𝑡ℎ = threshold value (automatically calculated via Halcon (see MVTec, 2014)) 

 

The calculation for finding the background and the foreground variances for a single 

threshold (th) are shown below:  

  

𝑊𝑒𝑖𝑔ℎ𝑡 (𝑤𝐵) =  ∑
𝑛𝑖

𝑁

𝑡ℎ

𝑖=1

               (4.25) 

𝑊𝑒𝑖𝑔ℎ𝑡 (𝑤𝐹) =  ∑
𝑛𝑖

𝑁

𝐿

𝑖=𝑡ℎ+1

 
                              

(4.26) 

𝑀𝑒𝑎𝑛 (𝜇𝐵) =
∑ 𝑖 ∗ 𝑛𝑖

𝑡ℎ
𝑖=1  

∑     𝑛𝑖
𝑡ℎ
𝑖=1

 (4.27) 

𝑀𝑒𝑎𝑛 (𝜇𝐹) =
∑ 𝑖 ∗ 𝑛𝑖

𝐿
𝑖=𝑡ℎ+1  

∑   𝑛𝑖
𝑡ℎ
𝑖=1

 (4.28) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝜎𝐵
2) =

∑ (𝑖 − 𝜇𝐵)2 ∗  𝑛𝑖
𝑡ℎ
𝑖=1  

∑   𝑛𝑖
𝑡
𝑖=1

 (4.29) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝜎𝐹
2) =

∑ (𝑖 − 𝜇𝐵)2 ∗  𝑛𝑖
𝐿
𝑖=𝑡ℎ+1  

∑   𝑛𝑖
𝑡
𝑖=1

 (4.30) 

Where:  

L is gray levels of gray image [1, 2, 3,…, L] 

The number of pixels at level i is expressed by 𝑛𝑖 

N is the total number of pixels (equal to n1 + n2 + n3 + … + nL) 
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The pixels are divided into a background class (𝐶𝐵) and a foreground class (𝐶𝐹) by a 

threshold at level th 

𝐶𝐵 denotes pixels with levels [1, 2, 3,…, th] 

𝐶𝐹 denotes pixels with levels [t+1, t+2, …, L] 

 

The final value is the ‘within-class variance' (see Eq. 4.24) for the threshold 

value t. The similar calculation needs to be made iteratively for all the possible 

threshold values from 1 to L. Finally, threshold T, which has the lowest ‘within-class 

variance,’ was selected to be the final threshold. All pixels with a level less than T are 

background, while all those with a level greater than or equal to T are foreground or 

objects of interest.   

 

 

4.6.2.2. Selecting the area of interest 

This section was focused on locating a small rectangle as a data matrix code 

(2D code) on the banana’s surface. Generally, a banana’s greatest diameter is in its 

middle part. Therefore this area was recommended for placement of the code. 

However, since bananas have irregular shapes, applying a simple image processing 

method center of gravity of a region in a gray value image was not able to find the 

center point of a banana correctly. With the help of Fig. 4.6.13, the following steps 

demonstrate how to select and generate a small rectangle at the center point of a 

banana. 

1) Region (a) was extracted based on the steps in Fig. 4.6.13.  

2) Applying a smallest-area enclosed rectangle to the banana region with any 

orientation (region b). This step determined the smallest enclosed rectangle 

of a region (closed curve) based on Freeman and Shapira (1975), in the 

center of which the inclination and the two radii of the rectangle were 

calculated.  
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Fig. 4.6.13. Steps for positioning a code on banana 

 

3) Generating the rectangle in the center of the banana as region (c). The 

width of the rectangle was set to about 5 pixels. Then, the intersection 

between region (a) and region (c) was calculated. 

4) Computing the length of the intersected area of the banana as a diameter. 

This diameter was calculated based on pixels. 

5) Calculating the middle point of the intersected area, meaning the center 

part of the banana (d).  

6) Generating the rectangle based on the given middle point in Step 5 (Fig. 

4.6.14). The inclination of the rectangle was measured based on the result 

1 

2 

3 

4 

6 

5 
center point based on 

the red region (d) 

Generating the rectangle based on the 
center point selected 

code location 

Intersected area 

(red region) 

Calculating intersection between white 
region (a) and blue region (c) 

region c region a 

Generating smallest rectangle on banana 
region with any orientation 

smallest rectangle (b) 

Banana image after pre-processing and 
background removal 

region a 
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given by Step 2 (Fig. 4.6.13). In this 10 mm * 10 mm sample the edge 

length of the 2D code was generated.   

 

In order to evaluate the successful localization of codes on the fruit, the following 

samples were examined. The success rate of the localization of the codes is defined 

as a percentage. 

1. Implementation of the algorithms for banana fingers  

a. A total of 30 green banana fingers with different shapes, from slightly 

curved to very curved, were randomly selected  

b. A total of 30 green banana fingers were posed randomly at different 

orientations  

2. Implementation of the algorithms for different fruits, such as avocados, apples, 

peppers, and cucumbers  

3. Implementation of the algorithms for banana hands  

Seventy green mature banana hands were used for the training set. Based on 

the training data set, the range of diameter values of each finger was added 

into the algorithm in order to increase the correct localization of the codes. The 

diameter values of the fingers depended on variety and quality standards of the 

bananas. In general, the diameter of green mature Cavendish bananas, from 

small-sized fruits to large-sized fruits, was set to around 31 – 39.5 mm 

(Mencarelli and Mejia, 2004). Another seventy green mature banana hands 

were used to measure the performance of the training set. The banana hands 

were examined by comparing the banana’s ventral and dorsal sides to obtain 

the best format for each category (see Fig. 4.6.14). In the country of production, 

banana hands are commonly cut from the stalks of banana bunches and 

immediately deposited in a tank of  cool water. Generally, the banana hands 

are separated into clusters of five to eight fingers. Afterwards the bananas are 

labeled with stickers while wet. Therefore, the algorithm has to be adapted to 

the wetness and irregular shapes of banana fingers. 
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Fig. 4.6.14. Ventral side and dorsal side of banana hands 

Ventral side Dorsal side 
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4.7. Implementation of the investigation for optimum laser parameters 

4.7.1. Experiment and quality assessment for poinsettia 

4.7.1.1. Laser marking parameters 

WinMark pro software (Synrad Inc., USA) was used in order to control every 

aspect of the laser marking process, including changing the laser parameters. Four 

laser parameters (laser power, resolution, raster scan direction and storage time) with 

five repetitions were applied in the marking of poinsettia leaves (Table 4.7.1). The 

resolution was expressed as dot per inch (dpi). Dot per inch represents the intensity of 

laser spots in a given area.  

 

Table 4.7.1. Different laser output power, resolution, and raster scan direction applied 

to poinsettia leaves  

No. 

Power (W), 

[resolution 

(dpi)] 

Laser energy  

(J per 

character) 

No. 

Power (W), 

[resolution 

(dpi)] 

Laser energy 

(J per 

character) 

1 7.0 [200] v 3.90 25 0.71 [600] h 1.08 

2 7.0 [200] h 1.73 26 0.71 [500] h 0.79 

3 5.2 [200] v 2.92 27 0.71 [400] h 0.54 

4 5.2 [200] h 1.29 28 0.71 [200] h 0.17 

5 3.5 [200] v 1.93 29 0.50 [700] v 2.21 

6 3.5 [200] h 0.85 30 0.50 [600] v 1.67 

7 1.7 [200] v 0.95 31 0.50 [500] v 1.22 

8 1.7 [200] h 0.42 32 0.50 [400] v 0.83 

9 0.93 [700] v 4.08 33 0.50 [200] v 0.28 

10 0.93 [600] v 3.09 34 0.50 [700] h 1.00 

11 0.93 [500] v 2.26 35 0.50 [600] h 0.76 

12 0.93 [400] v 1.54 36 0.50 [500] h 0.55 

13 0.93 [200] v 0.51 37 0.50 [400] h 0.38 

14 0.93 [700] h 1.86 38 0.50 [200] h 0.12 

15 0.93 [600] h 1.40 39 0.43 [700] v 1.89 

16 0.93 [500] h 1.02 40 0.43 [600] v 1.43 

17 0.93 [400] h 0.69 41 0.43 [500] v 1.05 

18 0.93 [200] h 0.22 42 0.43 [400] v 0.71 

19 0.71 [700] v 3.14 43 0.43 [200] v 0.24 

20 0.71 [600] v 2.39 44 0.43 [700] h 0.86 

21 0.71 [500] v 1.74 45 0.43 [600] h 0.65 

22 0.71 [400] v 1.19 46 0.43 [500] h 0.47 

23 0.71 [200] v 0.39 47 0.43 [400] h 0.32 

24 0.71 [700] h 1.43 48 0.43 [200] h 0.10 

v: vertical scan direction, h: horizontal scan direction 
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The time required for a laser head has to finish one complete marking 

operation is expressed as cycle time. The laser energy was calculated by multiplying 

output power by the cycle time. Raster marking was accomplished by switching the 

beam on and off as it moved across the image. Raster marking can create filled 

objects or text, or it can reproduce photographic images. The raster marking direction 

was divided into two different types, i.e. vertical scan direction and horizontal scan 

direction (see Fig. 4.7.1). Figure 4.7.1 shows an example of laser marking text 

formatted on a poinsettia leaf.  

 

 

 

                    raster fill 

Fig. 4.7.1. Laser-marked poinsettia leaf and illustration of raster marking method 

 

 

4.7.1.2. Assessment of marking 

Each leaf was evaluated by assessing the heat affected zone (HAZ) and the 

unaffected zone. The marked area had the most energy and the highest temperature 

of the laser marking process. The heat affected zone had a temperature that rose less 

than in the mark area. The unaffected zone was relatively not influenced by the laser 

beams. The visual assessment was classified based on a 4-level scale:  

a. No apparent HAZ: corresponding to HAZ index 0   

b. Slight HAZ: total affected area 1%-25%, corresponding to HAZ index 1   

c. Moderate HAZ: total affected area: 26%-75%, corresponding to HAZ index 2   

d. Severe HAZ: total affected area 76%-100%, corresponding to HAZ index 3    

 
A leaf affected zone index formula was developed and is presented in Equation 

[4.31]. During evaluation, each leaf was put into a category according to the severity of 

the damage in a 4-level scale with five repetitions. Each leaf was evaluated after three 

days of treatment. 

scanning 

line 
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 HAZ index = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑠𝑢𝑎𝑙 𝑑𝑎𝑚𝑎𝑔𝑒 𝑜𝑛 𝑒𝑎𝑐ℎ 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 

 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠
𝑥 100%   (4.31)  

 

 
4.7.2. Experiment and quality assessment for bananas 

4.7.2.1. Spectral reflectance of marked bananas 

Ripe bananas were marked at different laser powers (Fig. 4.7.2) with 10 

repetitions. The laser marking speed was set to 400 mm s
-1

. The images were 

captured using a hyperspectral imaging camera (Helios, EVK DI Kerschhaggl GmbH 

Austria). Significant differences in reflectance among treatments were calculated. 

 

 

Fig. 4.7.2. Laser-marked areas on a banana created at different laser powers 

 

 

4.7.2.2. Quality of the codes 

The modules of the DM codes were created with the energy inputs, the laser 

powers, and the marking times shown in Table 4.7.2. The treatments were selected 

from four levels of low-power laser in order to cause minimum damage to the banana 

peels. Various levels of marking time corresponded to contrast values that could be 

stably decoded. Overall, 16 different treatments with five repetitions were conducted.  

 

Table 4.7.2. Laser energy applied to the bananas depending on the laser power (p) 

and the marking time (t) 

Laser power (W) Laser energy (Joule per module) 

(p1) 2.2 p1t1 (0.206) p1t2 (0.159) p1t3 (0.118) p1t4 (0.084) 

(p2) 2.0 p2t1 (0.187) p2t2 (0.145) p2t3 (0.107) p2t4 (0.076) 

(p3) 1.8 p3t1 (0.169) p3t2 (0.130) p3t3 (0.097) p3t4 (0.068) 

(p4) 1.6 p4t1 (0.150) p4t2 (0.116) p4t3 (0.086) p4t4 (0.061) 

t1 = 0.0937 s per module; t2 = 0.0724 s per module; t3 = 0.0537 s per module; t4 = 
0.0381 s per module 
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The DM code images were assessed based upon ISO/IEC 15415 standards 

(2011). In order to decode and assess a DM code in an image, some general image 

processing steps in the Halcon software (MVTec Software GmbH, Munich, Germany) 

were used (see Fig. 4.6.2). All treatments were evaluated every day with five 

repetitions for nine days of storage. Table 4.7.3 provides information concerning how 

the parameters in step 6 in Fig. 4.7.3 have to be used in the ISO/IEC 15415 (2011) to 

grade DM codes. 

 

 

Fig. 4.7.3. Image analysis steps to evaluate data matrix codes using the Halcon 

software 

 

Table 4.7.3. Data matrix code print quality (ISO/IEC 15415, 2011) 

Parameter 

Grade 
Decode 

Symbol 

Contrast 

(SC) 

Axial Non-

Uniformity 

(ANU) 

Grid Non-

Uniformity (GNU) 

Unused Error 

Corection 

(UEC) 

4 (A) Passes ≥0.70 ≤ 0.06 ≤ 0.38 ≥0.62 

3 (B) Passes ≥0.55 ≤ 0.08 ≤ 0.50 ≥0.50 

2 (C) Passes ≥0.40 ≤ 0.10 ≤ 0.63 ≥0.37 

1 (D) Passes ≥0.20 ≤ 0.12 ≤ 0.75 ≥0.25 

0 (F) Fails <0.20 > 0.12 > 0.75 <0.25 

Explanations:  

a. Contrast: difference between minimal and maximal pixel intensity in the data code 

domain  

b. Decoding or readability: determining whether the symbol (DM code) can be 

decoded or not. The percentage of readability (r) is calculated as follows: r = (k 

100)/N, where k represents the number of read codes and N stands for the sample 

size  

Reading the DM 
code image file  

Choosing the specific 2D 
data code model 

 Getting quality parameters 
of the DM code 

Choosing parameters 
setup of the DM codes 

Decoding the DM 
code 

 Displaying the print quality 
parameters: symbol contrast, 

readability, axial non-uniformity, 
grid non-uniformity and unused 

error correction  

1 
1 

1 
3 

1 
2 

1 
4 

1 5 1 
6 
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c. Axial non-uniformity: the squareness of the symbol (distance between modules 

center position is the same in horizontal and vertical directions)  

d. Grid non-uniformity: the deviation of the modules from their ideal grid 

e. Unused error correction: the amount of error-correcting capacities not already used 

by the present data code symbol 

 

 

4.7.2.3. Readability of the codes 

4.7.2.3.1. Encoding data matrix code 

Different levels of data matrix sizes were chosen based on Table 4.7.4. Table 

4.7.4 demonstrates the percentage of space for error correction and the number of 

codewords (data bytes). There are three steps required to encode a data matrix code: 

data encoding, error correction and matrix building (GS1, 2018). As an example, if 24 

numeric digits have to be encoded, the matrix size is containing of 16 rows and 16 

columns. The matrix is made up of 24 bytes, which is the sum of the total number of 

data and error codewords is 12 + 12 (see Table 4.7.4). 

 

Table 4.7.4. Data Matrix code symbol attributes (GS1, 2018) 

Data matrix size Data region Total codewords Maximum data capacity 

Row Column Size No Data Error Numeric Alphanumeric 

10 10 8x8 1 3 5 6 3 

12 12 10x10 1 5 7 10 6 

14 14 12x12 1 8 10 16 10 

16 16 14x14 1 12 12 24 16 

 

Suppose we want to encode the alphanumeric characters ‘ABC’. The value of 

the codewords A, B and C are calculated simply by using "ASCII value + 1". There are 

three codewords to encode (see Table 4.7.4). If we want to encode using numeric 

values, the codewords are calculated as two digits using the “numeric value of digit 

pairs + 130” (Fig. 4.7.5). By using the Reed-Solomon algorithm (ISO/IEC 16022), the 

error corrections were added into codewords. Afterwards, the codewords are 

translated into binary. Finally, the binary codewords are placed in the matrix (matrix 

building) as symbolic characters based on the algorithm described in Annex F from the 

ISO/IEC 16022 standard. 
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Table 4.7.5. Encoding example of ECC200 ASCII based on ISO/IEC 16022 (2006) 

Data Method Evaluation Codewords (data) 

ABC ASCII value + 1 (65+1), (66+1), (67+1) 66, 67, 68 

123456 Numeric value of digit 

pairs + 130 

(12+130), (34+130), 

(56+130) 

142, 164, 186 

23ENC (Numeric value of digit 

pairs + 130), (ASCII 

value + 1) 

(23+130), (69+1), 

(78+1), (67+1) 

153, 70, 79, 68 

.  

 

4.7.2.3.2. Procedures 

In this study, a maximum DM size was selected according to the maximum 

encoded data that can be stably read by image processing algorithms after laser 

treatment (limited to 24 numeric data capacity). Various DM edge lengths were used 

to determine the minimum pattern size (edge length) that can be stably decoded. The 

maximum symbol size was limited to 12 mm due to the size of the bananas and their 

curvature.  

The treatments were selected from four levels of a low-power laser. The laser 

powers used were 1.6 W, 1.8 W, 2.0 W and 2.2 W. Four different sizes of DM code 

were generated, with edge lengths of 6 mm, 8 mm, 10 mm and 12 mm. Fig. 4.7.4 

shows the sizes of the DM symbols given in terms of numbers of rows and columns 

(10x10 modules, 12x12 modules, 14x14 modules and 16x16 modules). The size of the 

modules was based on the calculation of a module’s area for each DM symbol. All 

combination treatments were repeated five times.   

 

 
10x10 modules 

Data: '598' 
Module size:  

0.6 mm * 0.6 mm   
(0.36 mm²) 

 
12x12 modules 

Data: '5983343232' 
Module size:  

0.5 mm * 0.5 mm   
(0.25 mm²) 

 
14x14 modules 

Data: '59833432325675' 
Module size:  

0.43 mm * 0.43 mm   
(0.18 mm²) 

 
16x16 modules 

Data: '59833432325675800' 
Module size:  

0.375 mm * 0.375 mm   
(0.14 mm²) 

  

 

 

Fig. 4.7.4. Examples of data matrix codes on green bananas with the same edge 

length (6 mm) and the same laser power immediately after laser marking  

6
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m
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Images of the bananas after laser-marking were captured by using a CCD 

camera (DBK41BU02.H, The Imaging Source Europe GmbH, Bremen, Germany). The 

readability of the codes was tested with the image processing software Halcon 12 

(MVTec Software GmbH, Munich, Germany). The percentage of readability r was 

calculated as: 

r = (k*100)/N         (4.32) 

 

where k denotes the number of decoded codes, and N is the sample size. 
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5. RESULTS 
 

5.1. Results for optimization of laser positioning  

5.1.1. Developed algorithms 

5.1.1.1. Algorithms and procedures for poinsettia 

Figure 5.1 shows the alignment results between the depth image and the color 

image. The images are properly aligned; although there are small black regions, they 

are just invalid depth regions.  

  

 

Fig. 5.1. Alignment between depth image and color image 

 
 

The depth image contains black regions of undefined-depth pixels. The gray 

value of these pixels is 0 (see Fig. 5.2.c). According to Danciu, et al. (2012), there are 

two main reasons that the depth image contains the black regions. The first reason is 

that the objects are too close or too far from the camera, which may cause shadows 

on the objects. The second reason is that some objects, composed of materials that 

reflect or refract light, cannot return the correct information.  

The black regions that appear on depth images are removed using histogram 

thresholding. The minimum and maximum gray values of the depth images are based 

on absolute frequencies of the depth histogram within a region in the input image. The 

minimum gray value has to be set to more than 0 in order to remove the black regions.  

before alignment (a) after alignment (b) 
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Fig. 5.2. Poinsettia image captured by Kinect camera, (a) RGB image; (b) depth 

image; (c) depth image histogram 

 

(a) (b) (c) 

 
 

 

Fig. 5.3. Colored leaves’ extraction based on a depth image, (a) Original RGB image, 

(b) Original depth image, (c) Depth image without green leaves 

 

Fig. 5.3.a shows the green leaves’ extraction based on the depth image. For the case 

of Fig. 5.3.b, the red leaves and the green leaves are identical in the depth image. 

(a) 

(c) black regions 
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From this image, green leaves are selected to be a particular object that we want to 

eliminate. The results of the segmentation show that green leaves are successfully 

extracted from the plant (see Fig. 5.3.c). 

 

a. Depth image b. Distance transform 

 
 

c. Watershed algorithm d. Intersection between c and a 

  

 

e. Selected shape factor ratio ≥ 0.93 f. Selected max diameter (pixels)  

  

Fig. 5.4. Leaves’ image segmentation using distance transform and watershed 

algorithm 
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According to Fig. 5.4, the best leaf location for laser marking is assessed in two ways. 

Firstly, all leaves detected have to be equal or more than the shape factor ratio (≥ 

0.93). Secondly, the maximum diameter of the selected shape is chosen. 

Figure 5.5 shows an example of the algorithm’s steps for identifying the main 

skeleton on poinsettia leaves. Figure 5.5.a is an original input image after 

segmentation using the Otsu method, and Fig. 5.5.b is the result after applying Canny 

edge detection. Fig. 5.5 (c) and (d) show hysteresis thresholding and the polygon 

generated using the Ramer approximation, respectively. Fig. 5.5.e depicts the five 

longest lines detected on the main leaf skeleton. The length of the lines was calculated 

as pixel size.    

 

 
  

a. Input image b. Canny edge detection c. Hysteresis thresholding 
(Tlow= 1; Thigh = 15) 

 

 

 

 

 

yellow lines: lines selected 
by algorithm; white 
number: length of the lines 
(pixels) 

d. Polygon generated 
(Ramer approximation) 

e. The five longest lines detected 
 

   

Fig. 5.5. Main leaf skeleton detection steps 

 

The effect of different positions on leaf skeleton detection is shown in Fig. 5.6. The 

longest five lines are successfully selected from different positions (such as: 0°, 90°, 
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180° and 270°). The asterisk symbol represents the starting position of the plant; it 

changes according to the chosen orientation. 

 

 
Fig. 5.6. Different position of poinsettia on main leaves’ skeleton detection  

 

Position 1 (0°)  Position 2 (90°)  

Position 3 (180°)  Position 4 (270°)  
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5.1.1.2. Algorithms and procedure for bananas 

Figure 5.7 shows an example of the use of Otsu’s thresholding to separate 

between the background and object of interest. The three different channels (L*a*b*) 

are compared in order to find the best results. According to Fig. 5.7, channel a* 

represents the best channel that maximizes the separation between banana and 

background.   

 

 
Fig. 5.7. Histogram and banana image after automatic Otsu thresholding  

 

After separating banana images using Otsu’s thresholding, binary images are 

obtained in which foreground parts are numerically displayed with 1 (white) and 

background is 0 (black). Then, unwanted small objects (noise) are removed. To 

achieve a whole banana image, the holes in each image are filled. The resulting 

banana images are shown in Fig. 5.8. 
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Fig. 5.8. An example of a banana image after background removal 

 
The algorithm steps in Fig. 4.6.14 were applied to banana hands. Figure 5.9 

shows the results of the codes’ localization on the banana hands. The banana fingers 

are labelled within the codes on the ventral side. Step 6 in Fig. 5.9 shows three fingers 

labelled by the algorithms correctly.  

 

 

Fig. 5.9. Positioning of codes on banana hands 

Color image of banana Banana image without background 
 

Original image 

Pre-processing and 
background removal 

Generating smallest rectangle 
on banana region  

Calculating intersection between 
white region and blue region  

Intersected area (red region) Calculating of center points 
based on the red region  

Generating the rectangles (codes) 
based on the center points selected  

1 2 3 

4 5 6 
center points codes 
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5.1.2. Evaluation of the developed algorithms 

5.1.2.1. Algorithm evaluation for poinsettia 

5.1.2.1.1. RGB-Depth algorithms 

5.1.2.1.1.1. Color segmentation based on depth images  

The method separated different colors of leaves based on a depth image. The 

segmentation performance of the proposed method is remarkable; only two plants 

(2.5%) failed to be detected (Table 5.1.2). The experimental results show that the 

proposed color segmentation based on a depth image can separate green leaves from 

the image effectively. The results will be used for the next experiment step (sub. 

section 5.1.2.1.1.2).  

 

Table 5.1.2. Color segmentation based on a depth image of green leaves  

 Plant count Separated Unseparated 

Total 80 78 2 
Percent (%) 100 97.50 2.5 

N = 80 poinsettia plants 

 

 

5.1.2.1.1.2. Depth image segmentation based on distance transform-watershed 

method  

The segmentation of the poinsettia leaves was conducted from a top-view 

image. The experiments were carried out according to watershed segmentation using 

a distance transform method. The idea is to create a border as far as possible from the 

center of the overlapping objects. This strategy works very well on rounded objects 

and is called a distance transform watershed method. It consists of calculating the 

distance transform of the binary image, inverting it (so the darkest parts of the image 

become the centers of the objects) and then applying a watershed method to it using 

the original image as mask. Segmentation of leaf using depth data is robust even with 

background noise and complex illumination such as shadows. The distance transform-

watershed method can efficiently and correctly identify leaves based on their depth. 

Therefore, accurate segmentation can be obtained for occluded leaves. Overlapping 

leaves are usually attached close to each other and show small differences in depth.  

It can be observed that the classification rate using Kinect v1 was in the range 

of 47.50% for true positives and 38.75% for false positives (Table 5.1.3). Both true 

negatives and false negatives yielded an identification rate of 0% and 13.75%, 

respectively. Moreover, the final classification rate using Kinect v2 was in the range of 
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92% for true positives and 4% for false positives. True negatives and false negatives 

yield an identification rate of 0% and 4%, respectively. 

 

Table 5.1.3. Classification rates of poinsettia leaves using Kinect V1 and Kinect V2 

 
Plant count 

True 

Positive 

False 

Positive 

True 

Negative 

False 

Negative 

Kinect v1      

Total 80 38 31 0 11 

Percent (%) 100 47.50 38.75 0 13.75 

Kinect v2      

Total 80 74 3 0 3 

Percent (%) 100 92.50 3.75 0 3.75 

True Positive: a correctly identified leaf; False Positive: overlapping leaves detected as 

a leaf; True Negative: no leaf and no overlapping leaves detected as a leaf; False 

Negative: a partial leaf is detected. 

 

 

5.1.2.1.2. Main leaf skeleton algorithms  

Table 5.1.4 describes the results in terms of the longest five lines of the main 

leaf skeleton detected. In the following table, the successful leaf number detected was 

at least 3.3. Meaning that the algorithm has a correct identification rate of 66%.  

 

Table 5.1.4. Successful detection of the longest five lines of main leaf skeleton  

Leaf number 
Successful leaf number 

(mean ± standard deviation) 

Mean success 

rate (%) 

5 3.3 ± 1.011 66 

N = 80 plant samples 

 

In this study, it is assumed that laser marking is performed only on a single leaf. 

Since Table 5.1.4 illustrates that the number of successful main leaf skeleton 

detections was 3.3 leaves, the evaluation of a skeleton by the detection of a single leaf 

becomes possible. The accuracy of developed algorithms based on a confusion matrix 

is presented in Table 5.1.5. The main skeleton (true positive) is 80% correctly 

identified. False positives and false negatives have an identification rate of 2.5% and 

3.75%, respectively. 13.75% of true negatives are detected.   
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Table 5.1.5. Classification of the plants from a single poinsettia leaf in the test set 

 
Plant count 

True 

positive 

False 

positive 

True 

negative 

False 

negative 

Total 80 64 2 11 3 

Percent (%) 100 80 2.5 13.75 3.75 

True positive: main skeleton correctly identified; false positive: branches detected as 

main skeleton; true negative: no main skeleton and no branches detected as main 

skeleton; false negative: line detected is too short but it represents a larger leaf. 

 

Examples in Fig. 5.10 illustrate that the developed algorithm successfully detects the 

longest main skeleton (true positive) in different plant samples.  

  

 
 

 
 

Fig. 5.10. Examples of successful main leaf skeleton detection (true positive) 

 

Figure 5.11 shows false detections of main skeletons of poinsettia leaves by 

the algorithms. Fig. 5.11.a shows branches detected as the main skeleton (called false 
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positives), while in Fig. 5.11.b no main skeleton and no branches are detected as the 

main skeleton by the algorithms (true negative). The third example is the false 

negative (Fig. 5.11.c), in which the line detected is too short but represents a larger 

leaf.  

 

 

 

Fig. 5.11. Examples of wrong detection. (a) false positive, (b) true negative, (c) false 

negative 

(a) 

(b) 

(c) 
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The detection of main leaf skeletons at various rotations reveals minor differences 

after evaluation, due to the inconsistency in detecting main leaf skeletons from one 

position to another position. This shows that the skeleton images become 

discontinuous. The deviations in leaf detection at various orientations are shown in 

Table 5.1.6. According to the mean success rate results, the standard deviation 

obtained is 6.542%. The length of the line is not similar at different positions, which 

means that the algorithms depend on the orientation. However, the amounts of leaves 

that are detected indicate conformity with each other, despite the fact that slight 

variations are visible.   

 

Table 5.1.6. The five longest main leaf skeletons identified at different orientations  

Orientation 
Successful leaf number 

(mean ± standard deviation) 

Mean success 

rate (%) 

0° 3.04 ± 0.95 60.83 

90° 2.92 ± 1.02 58.33 

180° 3.37 ± 1.05 67.50 

270° 2.58 ± 1.10 51.67 

Standard deviation  6.542 

N = 80 plant samples 



5. Results 
     

77 

 

5.1.2.2. Algorithm evaluation for bananas 

5.1.2.2.1. Algorithm evaluation for banana fingers 

Positioning codes on bananas of different shapes is shown in Fig. 5.12. Shape 

diversity and pedicel of bananas will lead to slight differences in selecting the middle 

point. The inclination of the rectangular code is slightly non perpendicular to the 

banana’s shape. However, in general the algorithm was 100% successful in placing 

the rectangular code in the middle of banana fingers with different shapes.  

 

 

Fig. 5.12. Positioning of the code on bananas with slight curve and curve shape 

 

 

Fig. 5.13 shows that the algorithm is flexible with any orientation. The method 

can also be effectively applied to different shapes of horticultural products (Fig. 5.14). 

Fruits’ shapes commonly have an axis-symmetric geometry (i.e. cylindrical and non-

cylindrical). Compared with bananas, finding the midpoint using the algorithm is easier 

for other fruits which have axis-symmetric shapes.  
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Fig. 5.13. Positioning of a code on a banana with different orientations 

 

 

Fig. 5.14. Positioning of a code on fruits and vegetables 

 

 

5.1.2.2.2. Algorithm evaluation for banana hands 

The successful positioning of the codes on ventral and dorsal banana sides are 

compared in order to obtain the best results (see Table 5.1.7). For ventral banana 

sides, the system is capable of selecting 92.86% of the banana hands that contain at 

(a) 

(c) 

(b) 
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least one code (label), with a success rate of 75.71% for banana hands that contains 

more than one code (labels). The success rate for dorsal banana sides is 67.14% (at 

least one code selected by the algorithms), while the success rate for selecting more 

than one code is only 35.71%. Therefore, positioning of the codes on ventral banana 

sides shows the best results. 

 

 Table 5.1.7. Successful rate of localization of codes (labels) on banana hands  

 Banana hands 

counts 

Amount  Rate (%) 

Success False  Success False 

At least one code:       

- Ventral banana side 70 65 5  92.86 7.14 

- Dorsal banana side 70 47 23  67.14 32.86 

More than one code:       

- Ventral banana side 70 53 17  75.71 24.29 

- Dorsal banana side 70 25 45  35.71 64.29 

 

 

Some examples in Fig. 5.15 and Fig. 5.16 illustrate the algorithms which successfully 

locate the codes (labels) on banana hands.   

 

   

   

Fig. 5.15. Successful positioning of the 2D codes on banana hands (ventral side) 
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Fig. 5.16. Successful positioning of the 2D codes on banana hands (dorsal side) 

 

Unsuccessfully positioning the codes (labels) on banana hands is shown in Fig. 

5.17. Fig. 5.17.a shows incorrect code positioning due to the detection of two fingers 

as one finger. Since the algorithms always locate the code in the middle point of the 

intersected line, every banana finger obviously has to be separated. Otherwise, the 

positioning of the code will remain an error (i.e. the code will be located in the middle 

of the two or more fingers selected). Although this error rarely happens (1.43%), this 

matter should be considered in order to increase correct positioning of the code. 

Another error was shown in Fig. 5.17.b-c, in which the fingers cannot be found by the 

algorithms. The lighting and the wetness of the bananas could be the reason for this 

situation. Most of the false detection is caused by these errors (5.71%). 

 

 

Fig. 5.17. False localization of the 2D codes on banana hands 

 

error detection  

(a) (b) (c) 

no found fingers (ventral side) 

no found fingers (dorsal side) 
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5.2. Optimization of laser parameters for marking 

5.2.1. Evaluation of energy output 

The actual beam power is measured as the total energy supplied per unit of 

time (Watt) with respect to laser power (%), as shown in Fig. 5.18. Figure 5.18 shows 

a scatter plot of laser power output as a function of laser power (%) with the 

correlation value of 0.9974. The regression equation is: 

 

Laser power output = (0.0710 * Laser power (%)) – 0.0663  (5.1) 

 

 

Fig. 5.18. Relationship between percentage of laser power use and actual beam 

power (5 repetitions) 

 

This regression is useful as it allows one to make predictions of laser output power. 

Table 5.2.1 shows a comparison between a water calorimeter chamber and a CO2 

laser power meter for calibrating laser power. The following table shows a slight 

difference between the two methods. 

 

Table 5.2.1. Comparison of using water calorimeter and CO2 laser power meter 

Laser power (%) water calorimeter (W) CO2 laser power meter (W)* 

100 7.03 6.90 ± 0.141 

80 5.61 5.68 ± 0.216 

* Mean value ± standard deviation (five repetitions) 

Adj. R² = 0.9947 

R² = 0.9948 

R = 0.9974 

Std. error of estimate = 0.1882 

Y = 0.0710 X - 0.0663 
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5.2.2. Laser parameter optimization for poinsettia 

The results of the evaluation of laser marking poinsettia leaves, based on a 4-

level scale, are shown in Fig. 5.19. The HAZ values of each leaf are calculated as 

percentages which correspond to the HAZ index (see sub-section 4.7.1.2).   

 

 

Fig. 5.19. Different levels of heat affected zones (HAZ) 3 days after laser marking on 

poinsettia leaf, with white numbers showing the calculation of damages on each 

character; (a) No apparent HAZ; (b) Slight HAZ; (c) Moderate HAZ; (d) Severe HAZ  

 

 The result of the HAZ index is presented in Table 5.2.2. The lowest HAZ values 

are obtained with a low laser power (0.43 W and 0.5 W) while the highest HAZ index 

was obtained from a high laser power. It is observed that a combination of low power 

and low energy proved to be the most effective treatment, with a HAZ index of 0. In 

addition, a HAZ index of 0 will cause no damage to the leaves. Therefore, the analysis 

of leaves’ damage with values of 0 (no apparent HAZ) are considered to be 

acceptable, as they may be stable during storage. On the other hand, leaves showing 

damage values of 1, 2 and 3 (slight, moderate and severe HAZ, respectively) are 

considered to represent unacceptable damages to the marking quality. Nevertheless, 

some treatments using too-low energy produce incomplete characters, particularly: 0.5 

(a) (b) 

(c) (d) 

1 2 4 

1 
2 

4 6 7 8 9 

1 2 3 4 5 

6 7 8 9 
10 11 12 13 

14 15 16 

3 

5 

HAZ = 0% 

HAZ = 62.5% 

HAZ = 25% 

HAZ = 100% 

3 
10 
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W [0.83 J per character], 0.5 W [0.28 J per character], 0.5 W [0.38 J per character], 

0.5 W [0.12 J per character], 0.43 W [1.05 J per character], 0.43 W [0.71 J per 

character], 0.43 W [0.24 J per character], 0.43 W [0.47 J per character], 0.43 W [0.32 

J per character], 0.43 W [0.10 J per character] (see Table. 5.2.2). Fig. 5.20 shows 

marks with incomplete results or inadequate contrast on poinsettia leaves. 

 

Table 5.2.2. Heat affected zone (HAZ) index of marked poinsettia leaves  

No. 

Power (W), 

[resolution 

(dpi)] 

Laser energy 

(J per 

character) 

HAZ 

index 
No. 

Power (W), 

[resolution 

(dpi)] 

Laser energy 

(J per 

character) 

HAZ 

index 

1 7.0 [200] v 3.90 3 25 0.71 [600] h 1.08 3 

2 7.0 [200] h 1.73 3 26 0.71 [500] h 0.79 2 

3 5.2 [200] v 2.92 3 27 0.71 [400] h 0.54 1.2 

4 5.2 [200] h 1.29 3 28 0.71 [200] h 0.17 0.4 

5 3.5 [200] v 1.93 3 29 0.50 [700] v 2.21 0.4 

6 3.5 [200] h 0.85 3 30 0.50 [600] v 1.67 0.2 

7 1.7 [200] v 0.95 2 31 0.50 [500] v 1.22 0 

8 1.7 [200] h 0.42 2 32 0.50 [400] v 0.83 0* 

9 0.93 [700] v 4.08 3 33 0.50 [200] v 0.28 0* 

10 0.93 [600] v 3.09 3 34 0.50 [700] h 1.00 0.4 

11 0.93 [500] v 2.26 3 35 0.50 [600] h 0.76 0 

12 0.93 [400] v 1.54 1.6 36 0.50 [500] h 0.55 0 

13 0.93 [200] v 0.51 1 37 0.50 [400] h 0.38 0* 

14 0.93 [700] h 1.86 3 38 0.50 [200] h 0.12 0* 

15 0.93 [600] h 1.40 2.4 39 0.43 [700] v 1.89 0 

16 0.93 [500] h 1.02 2 40 0.43 [600] v 1.43 0* 

17 0.93 [400] h 0.69 1 41 0.43 [500] v 1.05 0* 

18 0.93 [200] h 0.22 0.2 42 0.43 [400] v 0.71 0* 

19 0.71 [700] v 3.14 3 43 0.43 [200] v 0.24 0* 

20 0.71 [600] v 2.39 2.2 44 0.43 [700] h 0.86 0 

21 0.71 [500] v 1.74 2.2 45 0.43 [600] h 0.65 0* 

22 0.71 [400] v 1.19 1.2 46 0.43 [500] h 0.47 0* 

23 0.71 [200] v 0.39 0.8 47 0.43 [400] h 0.32 0* 

24 0.71 [700] h 1.43 3 48 0.43 [200] h 0.10 0* 

HAZ index: [0] no apparent HAZ; [1] slight HAZ; [2] moderate HAZ; [3] severe HAZ; v= 

vertical scan direction, h= horizontal scan direction. * Incomplete or inadequate contrast 
marking result 
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0.43 W [0.32 J per 
character] 

0.43 W [1.05 J per 
character] 

0.5 W [0.38 J per 
character] 

   

Fig. 5.20. Example of incomplete marking results or inadequate contrast on poinsettia 

leaves due to too-low laser energy 

 

In general, applying both raster scan directions (i.e. vertical and horizontal) 

doesn’t cause damage to the leaves during the storage period (see Table 5.2.1). 

However, one scan direction may mark faster than the other depending on the 

orientation of the raster image. Based on this study (Fig. 5.21), the time ratio based on 

cycle time between the horizontal direction and vertical direction was 1:2.1 (mean 

value), respectively. 

 

Fig. 5.21. Effect of laser marking resolution and raster scan direction on cycle time 
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According to Table 5.2.2, it can be seen that laser marking with 0.5 W [1.22 J 

per character], 0.5 W [0.76 J per character], 0.5 W [0.55 J per character], 0.43 W [1.89 

J per character] and 0.43 W [0.86 J per character] respectively prove to have the best 

marking ability, leading to the lowest HAZ values. Furthermore, based on the energy 

use during the marking process, 0.5 W [0.55 J per character] was chosen as the best 

treatment (see Fig. 5.22). 

 

 

Fig. 5.22. Laser marking on poinsettia leaves using 0.5 W [0.55 J per character] 

 

The mark becomes dark red in color at beginning of storage, and turns to 

yellowish-white as growth continues until 14 days of storage (see Table 5.2.3). 

Applying a laser marking with 5.2 W [1.29 J per character] causes severe damage to 

leaf tissue. At this level the mark became dried-up.  
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Table 5.2.3. Examples of changes to poinsettia leaves on selected samples during 1 

the storage period (five repetitions) 2 

Laser power 
(W), [Laser 

energy 
(J per 

character)] 

Day 1 Day 3 Day 7 Day 14 

0.43 [1.89] 

    

0.5 [0.55] 

    

0.5 [1.22] 

    

0.5 [1.67] 

    

0.71 [1.74] 

    

0.93 [2.26] 

    

5.2 [1.29] 

    

  3 
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5.2.3. Laser parameter optimization for bananas 

5.2.3.1. Spectral reflectance of marked bananas 

Fig. 5.23 compares the reflectance values of the five different parts in Fig. 

4.7.2. According to Fig. 5.23.a, there is no significant difference in the reflectance 

curves between the unmarked and marked banana surfaces. The curve of unmarked 

bananas produces different reflectance values compared to marked bananas. 

Because of this behavior and taking into account the difference between unmarked 

and marked bananas, the reflection difference is useful to differentiate marked and 

unmarked parts at low laser power. However, Fig. 5.23.b demonstrates that the 

distributions of the reflectance differences from 0.8 W to 1.6 W are very low and not 

useful. On the other hand, the reflectance difference for 2 W markings is significant 

between marked and unmarked parts, however on a very low absolute level. 

 

 

Fig. 5.23. Reflectance spectrum (R) of marked bananas in the infrared waveband (N = 

10 bananas): (a) mean reflectance (b) reflectance difference 

 

 

5.2.3.2. Quality of codes 

5.2.3.2.1. Decode 

Data matrix codes with a laser power of 1.8 W and 1.6 W with longer marking 

times (0.094 s per module and 0.072 s per module) can be read constantly, while a 

laser power of 2.0 W provides better results with a shorter marking time (0.038 s per 

module). A laser power of 2.2 W with all marking time treatments leads to poor 

readability (Fig. 5.24).   
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Fig. 5.24. Effects of laser marking and marking time on readability of data matrix code 

after 9 days of storage. Error bars represent standard error of mean (n= 5).  

 

In terms of energy use, the same laser energy does not guarantee high readability of 

the code; rather, readability depends on the laser power and marking time. This point 

is shown by the circle in Fig. 5.25, where similar energy leads to different code 

qualities.  
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Fig. 5.25. Data matrix codes on bananas after 9 days of storage (data matrix edge 

length 10 mm, 10x10 modules) 

 

5.2.3.2.2. Contrast values 

Figure 5.26 shows an analysis of the effects of both laser power and marking 

time on contrast values. The optimal combination of laser power and marking time 

becomes a key factor for producing high contrasts in the codes. As can be seen from 

this figure, the codes contrast increases when the laser power and marking time are 

higher. Contrarily, if both parameters decrease, then the code contrast declines. 

Increasing laser power with a longer marking time causes oxidation under the surface 

of the bananas and discoloration of the materials, which creates high contrast. A high 

contrast value does not guarantee a high readability of the code. Conversely, almost 

all codes cannot be decoded if the contrast value is lower than 25%. 
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Fig. 5.26. Effects of laser marking and marking time on contrast values of data matrix 

codes after 9 days of storage. Error bars represent standard error of mean (n= 5). 

 
 
5.2.3.2.3. Axial non-uniformity (ANU) 

The ANU describes the aspect ratio of the data code, in which the distance 

between the modules’ center positions is the same in the vertical and horizontal 

direction. If scaled only in one direction (i.e. only in its height or width), the quality of 

the grade will decrease. If ANU values ≤ 0.06, then the quality grade is high (ISO/IEC 

15415, 2011). Figure 5.27 depicts the effects of laser power and marking on ANU. In 

general, all treatments show good results (ANU ≤ 0.06). 
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Fig. 5.27. Effects of laser marking and marking time on the axial non-uniformity values 

of data matrix codes after 9 days of storage. Error bars represent standard error of 

mean (n= 5). 

 

5.2.3.2.4. Grid non-uniformity (GNU) 

The quality of grid non-uniformity quantifies the deviation of the modules from 

their ideal grid. If the modules are arranged in a rectangular grid and the value of GNU 

is ≤ 0.38, then the quality grade is high (ISO/IEC 15415, 2011). Based on this study 

(Fig. 4.28), the GNU values of all treatments are less than 0.38. This means that the 

GNU doesn’t change over all treatments. Moreover, there is no statistically significant 

difference among the treatments for both laser power and marking time on grid non-

uniformity values.  
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Fig. 5.28. Effects of laser marking and marking time on grid non-uniformity values of 

data matrix codes after 9 days of storage. Error bars represent standard error of mean 

(n= 5). 

 

 

5.2.3.2.5. Unused error correction (UEC) 

A code with a high quality grade requires no error correction. This quality grade 

quantifies the reserves in error correction that is still available after decoding the code. 

The more defective a code becomes, the more the error correction needs to be 

applied to be able to decode the data code. Based on Fig. 5.29, data matrix codes 

with a laser power of 1.8 W and 1.6 W at a marking time of 0.072 s per module show 

high grade unused error correction (UEC > 0.8). If UEC values are equal or more than 

0.62, then the value for the quality grade is high (ISO/IEC 15415, 2011). 

 



5. Results 
     

93 

 

 

Fig. 5.29. Effects of laser marking and marking time on the unused error correction 

values of data matrix codes after 9 days of storage. Error bars represent standard 

error of mean (n= 5). 

 

5.2.3.2.6. Damages to the codes during storage time 

Figure 5.30 shows images of bananas marked with different laser powers until 

9 days of storage. A laser power of 1.8 W and 1.6 W are appropriate for marking 

bananas for 9 days of storage. Moreover, laser marking on bananas at these 

conditions causes insignificant cell damage in the epidermis area. More significant 

damage appears on markings with high laser power. However, too-low power 

produces relatively less contrast. 

 



5. Results 
     

94 

 

 

Fig. 5.30. Damage to bananas after laser marking 

 

 

5.2.3.3. Readability of the codes  

Readability results using a laser power of 2.2 W are comparatively low. The 

readability of the codes with 14x14 modules and 16x16 modules varies from 0% to 

20%. Applying 10x10 modules and 12x12 modules increases the readability from 0% 

to 60% (see Table 5.2.4). A laser power of 2.0 W yields better results compared to a 

laser power of 2.2 W, due to the fact that increasing the laser power leads to more 

damage to the codes. High readability, ranging from 80% to 100%, is obtained at a 

laser power of 1.8 W. A laser power of 1.6 W leads to a wide variation of results (20%-

100% of readability). This clarifies that increasing the amount of modules in the code 

tends to decrease the readability of the code. Moreover, there is a noticeable 

decrease in code readability if the patterns have smaller sizes. 
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Table 5.2.4. Effects of DM size, power and edge length on readability after 9 days 

 
 
 
Fig. 5.31 shows the graphical output of the sigmoid regression analysis of different 

module sizes. The figure shows the sigmoid regression of readability (%) as a function 

of module size (mm²) with the correlation value of 0.96. The sigmoid regression 

equation is: 

𝑌 =
99.35

1+𝑒
−(

𝑥−0.149
0.19

)
       (5.2.1) 

            

This information is necessary for re-identification when considering the minimum size 

of the module. The probability of readability of bananas’ codes is about 48.5% with 

small modules (0.14 mm²), while bigger modules (1.44 mm²) show 99.2% readability. 

Hence, good readability (82.4%) is achieved with data matrix codes with module sizes 

of more than 0.45 mm², while all codes smaller than 0.36 mm² are decoded less than 

75% of the time.  

Power 

(W)   

Data matrix size (modules x modules) 

10 x 10 12 x 12 14 x 14 16 x16 

2.2  s1= 0.281 J s1= 0.209 J s1= 0.160 J s1= 0.122 J 

2.0  s1= 0.256 J s1= 0.190 J s1= 0.145 J s1= 0.111 J 

1.8  s1= 0.230 J s1= 0.171 J s1= 0.131 J s1= 0.099 J 

1.6  s1= 0.205 J s1= 0.152 J s1= 0.116 J s1= 0.088 J 

2.2  s2= 0.206 J s2= 0.153 J s2= 0.117 J s2= 0.089 J 

2.0  s2= 0.187 J s2= 0.139 J s2= 0.106 J s2= 0.081 J 

1.8  s2= 0.168 J s2= 0.125 J s2= 0.096 J s2= 0.073 J 

1.6  s2= 0.149 J s2= 0.111 J s2= 0.085 J s2= 0.065 J 

2.2  s3= 0.162 J s3= 0.105 J s3= 0.081 J s3= 0.062 J 

2.0  s3= 0.147 J s3= 0.096 J s3= 0.074 J s3= 0.057 J 

1.8  s3= 0.132 J s3= 0.086 J s3= 0.066 J s3= 0.051 J 

1.6  s3= 0.118 J s3= 0.077 J s3= 0.059 J s3= 0.045 J 

2.2  s4= 0.104 J s4= 0.068 J s4= 0.051 J s4= 0.040 J 

2.0  s4= 0.095 J s4= 0.062 J s4= 0.046 J s4= 0.036 J 

1.8  s4= 0.085 J s4= 0.055 J s4= 0.042 J s4= 0.033 J 

1.6  s4= 0.076 J s4= 0.049 J s4= 0.037 J s4= 0.029 J 

Edge length (s): s1= 12 mm; s2= 10 mm; s3= 8 mm; s4= 6 mm; N = 5 

 

 

Color Readability 
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 Fig. 5.31. Probability of readability of the laser marked codes on bananas based on 

the module size. The graph represents mean ± standard errors, and uses a sigmoidal 

regression equation  

 

 The image processing algorithm provides the ability to classify the contours of 

the code into foreground and background modules. Figure 5.32 visualizes the binary 

modules detected by the algorithms. These modules are the final binary codewords 

which are placed in the matrix as symbolic characters, according to the algorithm 

described in Annex F of ISO/IEC 16022 standards. Figure 5.33 shows the changes in 

the modules detected by image processing algorithms during the storage time. The 

figure shows an example of module damage detected on a DM size (16x16 modules) 

in which the 17-character text string “59833432325675800” is encoded in the code. At 

the beginning of the storage, the modules can be clearly detected with enough 

contrast; the code is also readable. However, after a week of storage the code 

becomes unreadable as the damage to the modules increases. 

 

𝑌 =
99.35

1 + e−(
x−0.149

0.19
)
 

R = 0.958 

R²= 0.918 

Adj. R²= 0.903 

Standard error of estimate= 5.332 

 

 

Module size = w * h 

w 

h 
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Fig. 5.32. Examples of successful encoding of data matrix code on banana after laser 

marking with a laser power of 1.8 W. (a) Data matrix size 10x10; (b) Data matrix size 

16x16 modules. Red and yellow represent binary 1 and binary 0, respectively. 

 

 

Fig. 5.33. Module damage detection on bananas over the storage time with a laser 

power of 2 W (white arrows represent error detection of modules) 

 

 

 

Decoded string: 

59833432325675800 

 

Decoded string:  

598 
(a) 

(b) 

Data matrix on bananas Visualization of binary pattern on the codes 
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6. DISCUSSION 
 
 
6.1. Discussion of the results relating to the positioning problems  

6.1.1 Procedures for poinsettia 

6.1.1.1. Color segmentation based depth image  

The segmentation algorithms were used on color and depth images obtained 

from the Kinect sensor. The color segmentation algorithm based on depth image 

achieved satisfactory results (see Table 5.1.2). Some studies have proposed the use 

of depth imaging techniques for phenotyping plants. Chéné, et al. (2012) presented 

that depth imaging from Kinect V1 could identify rosebush leaves with an accuracy of  

68%. These algorithms detect an object to be segmented when a stable number of 

connected components are reached. Azzari, et al. (2013) studied depth images with 

the manual measurements of plant structure and size of two plants growing in 

grassland. The results show that the depth images agreed well with the manual 

horizontal and vertical measurements of plant size. Moreover, Wang and Li (2014) 

estimated onion diameter from depth images with a greater average accuracy and 

robustness (root mean square error = 2 mm) than color images (root mean square 

error = 3.4 mm). Additionally, the predicted volume of onions had an accuracy of 

96.3%. Our experimental results proposed leaf segmentation that accurately extracted 

leaves based on depth image (97.5%), allowing us to suggest this approach as a 

feasible solution. In addition, the low cost makes this camera a promising tool for 

phenotyping specific plants in a greenhouse.  

 

6.1.1.2. Depth image segmentation based on a distance transform-watershed method 

The segmentation of poinsettia leaves is complex since more than two-thirds of 

the surface underneath the leaf is invisible as well as due to occlusion. Furthermore, 

sometimes only part of a leaf is detected (false negative) due to the difficulty in 

measuring accurate depth information of leaves in an irregular image gradient (i.e. leaf 

angle distribution). Changes in intensity value on the leaf surface produce an 

interrupted depth that consequences in over-segmentation of leaves (Xia, et al., 2015). 

In this situation, the leaf is detected as several small pieces of partial leaves. It is also 

challenging to model leaf shapes using geometric or statistical models, particularly 

parametric models and active shape models (Manh, et al. 2001; Xia, et al. 2013). 

Additionally, measurement of small objects might not be recognized by the Kinect V1, 

due to the physical limitations and resolution of the camera.  
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The exactness of depth measurement can be enhanced by using the Kinect 

V2. In this study, the Kinect V2 showed high accuracy (92.5%). Xia, et al. (2015) 

presented 3D segmentation of individual plant leaves from occlusions in complicated 

natural scenes using Kinect V1; the segmentation rate for overlapping leaves was 

86.67%. In their study, mean shift clustering was applied to extract plant leaves in 

depth images. Compared with Kinect V1, the Kinect V2 has improved hardware, 

according to coefficients published on the official website. Andujar, et al. (2016) 

investigated using depth cameras (Kinect V2) for estimating weed volume estimation. 

Maize plants were identified with a correlation of 77% with maize biomass. According 

to Yang, et al. (2015), the Kinect V2 has good accuracy (less than 2 mm) if the object 

is positioned perpendicularly towards Kinect within 0.5-3 m. Therefore, this method 

could be effective for separating heavy overlapping plant leaves showing significant 

differences in depth. The Kinect V2 shows acceptable performance with a great 

potential for application in many fields in agriculture. Leaf segmentation was tested on 

poinsettia plants and could also be applied to other plant species. More experiments 

should be carried out in order to improve the efficiency of segmentation. 

 

 

6.1.1.3. Main leaf skeleton 

Segmentation using the main leaf skeleton has the potential for development. 

The detection of a single main leaf skeleton yielded high results (80%). This result is 

due to the fact that the main skeleton is approximately linear. Another reason is that 

the light intensity of the pixels in the main skeleton is greater than in other leaf pixels. 

False positives occurred when the light intensity of the pixels in the branch skeleton 

was higher than in the main skeleton, due to the fact that the leaves’ surfaces were not 

smooth. A true negative was detected when three characteristics (i.e. linear main 

skeleton, high main skeleton intensity and smooth leaves) were not fulfilled. In these 

cases, the edges of the leaves were selected. A false negative occurred in cases of 

image degradation, where the main skeleton image became discontinuous.  

The images seemed to show differences in illuminance due to their variable 

orientations. Some of the main skeletons were not clear, and therefore the leaves 

could not be recognized. Different luminance affects the light intensity of the pixels on 

the main skeleton. However, the system was still able to correctly identify individual 

leaves. For further study, we assume that poinsettia images will become clearer and 
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that this system will be able to recognize more main leaf skeletons after the 

improvement of the image-capturing techniques.  

The performances of the proposed algorithms are compared to six existing 

references (Du, et al. 2013; Kirka, et al. 2009; Teng, et al. 2011; Wang, et al. 2013; 

and Zhang, et al. 2016) as shown in Table 6.2.1. Du, et al. (2013) proposed algorithms 

for a single leaf with no occlusion. The algorithms described a method of determining 

the characteristics of plant leaves according to the main fractal dimensions and 

venation of fractal dimensions. The experimental results showed that the effectiveness 

of the fractal dimension feature method reached 87.14%. Kirka, et al. (2009) labels 

pixels as soil or vegetation based on a combination of the greenness and intensity. 

However, the leaves are considered only one target and are not separated by a 

segmentation system. Teng, et al. (2011) studied 3D reconstructions of leaves in order 

to segment leaves. In this study, a camera was moved a slightly to take 3D images of 

each leaf. However, occluded leaves are difficult to separate. Wang, et al. (2013) 

described leaf segmentation of a leaf with a complex background. They use the Otsu 

and Canny operators to segment the target leaf. However, this method can only 

analyze one leaf image. Zhang, et al. (2016) developed a segmentation algorithm 

based on similar tangential directions, relative moments, and number of pixels as 

directions to calculate the leaf distribution. The rate of successful extraction from 

horticultural crop images reached 76.92%. 

 

Table 6.2.1. Comparison between our study and existing references  

References Methods 
Occluded 

leaves 
Leaf number 

Individual leaf 

identification 

Du, et al. 2013 Fractal 

dimension 

feature 

no 1 yes 

Kirka, et al. 

(2009) 

Gap fraction 

model 

yes Numerous no 

Teng, et al. 

(2011) 

Three-

dimensional 

no Several yes 

Wang, et al. 

(2013) 

Otsu-Canny no 1 yes 

Zhang, et al. 

(2016) 

Skeleton yes Numerous yes 

Our study Skeleton yes Numerous yes 
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The detection of poinsettia leaves is challenging due to leaves’ different 

orientations, partial occlusion, and the presence of other leaves with similar colors. 

However, the algorithm detects skeletons according to the skeletons’ characteristics. 

Therefore, if touching boundaries do not possess skeleton-like characteristics, this 

algorithm can eradicate the interference caused by occluding leaves. This system is 

able to identify leaves with a similar color, a similar depth, and complex overlapping 

leaves.  

Furthermore, the proposed algorithms always chooses the longest main leaf 

skeleton, meaning that errors due to the tilt angle of the leaves can be reduced. At a 

higher tilt angle, defined as the angle between the normal vector and the vertical axis, 

the plant’s 2D surface is represented by fewer pixels and thus measurement of area 

becomes less reliable (Apelt, et al. 2015). Chen, et al. (2009) stated that it is possible 

to mark an egg shell using a two dimensional CO2 laser. They investigated the 

correlation between the focus and the drilled holes on the eggshell’s surface. CO2 

laser beam is delivered by varying the f-theta focusing lens relative to the curved 

surface. This is achieved by using a different number of laser pulses to mark different 

regions of the surface. However, they establish only labels on the parts of eggshells 

with minor surface curvature. If all leaves are tilted and have complex freeform 

surfaces, a three dimensional laser marking system should be performed (Wang, et al. 

2017b). Three dimensional laser marking system provides synchronized movement of 

the laser beam to focus in three mutually perpendicular axes. Shape, orientation and 

position of the processed surface need to be identified in advance in 3D laser marking 

systems in order to handle curved, tilted and even freeform surfaces (Diaci, et al. 

2011).   

 
 
6.1.2. Procedures for bananas 

6.1.2.1. Evaluation for banana fingers 

The a* channel represents a green-red axis that maximizes the separation 

between the fruit and background colors. Studies have used L*a*b* color space to 

separate the object from its background when testing horticultural products. L*a*b* is 

found to be the best color space for plant and soil segmentation of lettuce (García-

Mateos, et al. (2015). Similar results are supported by other researchers (Shih and 

Liu, 2005; Hernandez-Hernandez, et al. 2016). Locating the rectangle in the central 

section of a banana is due to its larger diameter. Although different shapes of banana 

will influence the selection of a midpoint, the technique is overall successful in placing 
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a code (label) in the center of a banana (see Fig. 5.1.1). The advantage of this method 

is that it can adapt to different orientations of bananas (Fig. 5.1.2). This technique can 

also be adapted to other fruits and vegetables (Fig. 5.1.3). 

 

 

6.1.2.2. Evaluation of banana hands 

The results show that a small number of the banana hands cannot be labeled 

properly (7.14%, see Table. 5.1.1). There are some factors that affected the 

performance of the algorithms:  

Firstly, the algorithms place the code falsely in between banana fingers due to the 

algorithm’s failure to separate each finger. Two or more fingers are sometimes 

detected as one finger due to variable lighting. The changing of illumination due to the 

wetness of banana hands added substantial difficulty to the image segmentation 

process. Wetting a surface leads to a variety of changes in color and in luminance 

distribution, and saturation is generally lower for dry surfaces than for wet ones 

(Sawayama, et al. 2017). Moreover, due to their biological nature, horticultural 

products have high variability in sizes, forms, textures and colors (Blasco, et al. 2007; 

Du and Sun, 2004), which makes it challenging to establish a universal system of 

illumination that will be effective for all products (e.g. banana hands) and all kinds of 

situations. Such problems arise in horticultural products that are more or less spherical 

in shape, which results in a darkening of the edges of the object, while the central part 

looks brighter. This makes them more difficult to analyse (Unay and Gosselin, 2007; 

Aleixos, et al. 2002). Although regular color camera is capable of assessing banana 

hands’ parameters with high speed, the use of the color camera fails to exploit the full 

shape of fruits due to lighting conditions (Zhou, et al. 2012). This was also confirmed 

by Polder, et al. (2002) who classified tomatoes according to five ripeness stages by 

using an RGB camera, in which 51% of the pixels were misclassified.  

 

Secondly, occlusion between upper-row fingers and bottom-row fingers may cause 

errors in the selection of the midpoints. Overlapping banana fingers possess similar 

colors and luminance, and the overlapping boundaries are usually unclear. If each 

finger can be separated during segmentation, the algorithms can eliminate the 

interference due to overlapping. Hatou, et al. (1998) studied a segmentation technique 

for overlapping fruits using a thinning algorithm. However, the algorithm only applied to 

overlapping circle-shaped fruits. Song, et al. (2012) suggested a recognition and 
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positioning method for occluded apples based on a convex hull method. The convex 

hull of an object boundary was used to extract the smooth and real contours, as well 

as the center and radiuses of the extracted contours. The experimental results showed 

that the average positioning error of the method was 4.28%. 

Fruits or vegetables, which are sold loose or in multiples of the same type, 

must be labelled individually with the Fairtrade certification. According to Fairtrade 

certification mark guidelines (2011), bananas need to carry at least one adhesive label 

applied to banana hands. In this study, the algorithms were able to mark one or more 

label on banana hands and demonstrate the effectiveness of the proposed algorithm. 

Additionally, marking on the ventral side of banana hands, which has a high accuracy, 

is recommended over marking on the dorsal side.    
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6.2. Discussion of the results relating to the optimization of laser parameters  

6.2.1. Application for poinsettia  

6.2.1.1. Laser-poinsettia leaves interactions  

During the marking process, the temperature rise on the mark area and the 

quality of the mark are influenced by thermal conductivity. This can damage the 

surrounding leaf area, producing a heat affected zone (HAZ). Therefore, it is very 

important to minimize the size of the HAZ by selecting the optimal laser parameters. In 

the experiment performed, low output power and low energy proved to be an optimal 

treatment. The red bracts of poinsettia are susceptible to bract brushing and abrasion; 

however, changes of the mark into a yellowish-white color don’t cause mechanical 

injury, which can lead to leaf distortion. Otherwise, this leaf distortion could expand, as 

a result of fungus infection, to damage the entire bract.  

High contrast laser marking between undisturbed leaf tissue (red bracts) and 

the affected tissue could occur due to the laser energy being absorbed by bracts’ 

latex. Latex is a regularly milky plant exudate which is found in cells called laticifers. 

Latex contains a great variety of defense chemicals and also defense proteins in high 

concentrations (Konno, 2011). Coagulation of latex is able to seal wounds, preventing 

infections and further fluid loss (Dussourd and Elsner, 1987; Dussourd, 1995). 

According to Fineran (1982), the laticifers of poinsettia leaf are present in the spongy 

mesophyll and between the spongy and palisade layers. From this study, it can be 

speculated that leaf tissue is discolored when exposed to focused laser energy 

through thermal disruption of the mesophilic layer. Generally, the laticifers function as 

as depositories for the intracellular excretion of terpenoids, resins, tannins, alkaloids 

and others (Esau, 1967). Laser energy could be also absorbed by resins. Resin is also 

a sap exuded from injury. In some species it is a white color similar to latex, but in 

other species it is transparent. Resin is kept in canalicular inter-cellular spaces called 

resin ducts and is not kept inside cells (Konno, 2011). According to Kinoyari, et al. 

(1991), Sakai, et al. (1994) and Hieltjes, et al. (2002), the use of resin composition for 

laser marking allows for the achievement of highly visible white marking and easily 

adjustable transparency of the marked product. These reasons will be interesting 

background for further study. 
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6.2.1.2. Technical aspects 

WinMark pro software (Synrad Inc., USA) enables selection of the resolution 

and the type of raster scan. These treatments together with velocity and laser power 

are the primary factors that determine the speed and quality of the mark (Synrad, 

2006). Choosing the right raster scan direction is necessary in determining the smaller 

number of scanning lines. Thus the cycle time can be reduced and the laser energy 

can be effectively used. A higher resolution represents a higher number of dots per 

square inch. Increasing the resolution increases the quality of the text. On the other 

hand, this will require a longer contact time and more energy, resulting in a greater 

engraving effect. When using high resolution, a lower laser power should be applied in 

order to avoid damage to the leaf. 

 
 
6.2.2. Application for bananas 

6.2.2.1. Spectral reflectance of marked bananas 

The reflectance spectra in the near-infrared waveband between unmarked and 

marked bananas are almost identical, except when using a laser power of 2 W. 

However, the infrared reflections of the 2 W marks are low and the differences 

between marked and unmarked areas are insignificant. Considering these results, it 

would be not appropriate to use near-infrared detection systems to assess DM codes 

on marked bananas. Nonetheless, it indicates very clearly that CCD cameras are 

recommended for use in the visible waveband to assess laser markings on bananas. 

Moreover, the difference in reflection between marked and unmarked bananas in the 

visible waveband is noticeable. Especially at higher laser powers, the banana skin 

develops more contrast and becomes browner. Based on the results, the reflectance 

values of marked bananas are lower than those of unmarked bananas (see Fig. 5.2.1). 

These results are in line with Ariana, et al. (2006) and Lu, (2003). Ariana, et al. (2006) 

stated that reflectance of bruised tissue of cucumber fruit is generally lower than 

normal tissue. According to Lu (2003), bruised tissue on Red Delicious apples also 

had a lower reflectance than normal tissue. 

In term of mechanical injury, particularly bruises, Ariana, et al. (2006) stated 

that within two hours after bruising, bruises on a cucumber became darker than 

normal tissue in an image. The spectral differences between the bruised and normal 

tissue declined over time. The bruised areas were no longer visible on the image after 

six days. According to Miller (1992), this characteristic might be affected by the wound 

healing of the cucumbers in response to mechanical stress. However, in terms of laser 
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marking, minimal changes or damage during storage was observed when a low laser 

energy was used. The surface appearance of apples was unchanged at seven days 

after treatment at a lower laser power (Marx, et al. 2013). Based on Etxeberria, et al. 

(2009), fruits to which an individual pinhole was applied after laser marking retained 

their morphological structure during storage. However, sub-epidermal cells became 

darker due to metabolic activity and development of protective deposits. A similar 

effect was also observed on stored tomato and avocado, where a typical protective 

layer was deposited below the pinhole (Etxeberria, et al., 2006). 

 

 

6.3.2.2. Quality of the codes 

Marking at low laser power for a short time tends to yield relatively low 

readability due to a low contrast. However, applying low laser power for a longer time 

yields better readability. This behavior was also described by Sood, et al. (2008), 

namely that higher exposure time at a low laser energy level (0.000752 W dot
-1

) 

produces darker labels without significantly increasing peel disruption on tangerines. 

By contrast, using high laser power and a longer time may potentially harm bananas’ 

outer cell layers and lead to unsuccessful readability of the codes. Once the laser 

beam has irradiated the outer cells, photons penetrate into the epidermis layer and 

convert into thermal energy. Thus, the heat is distributed within the epidermis cells. 

According to Blanaru, et al. (2003), the heat distribution is influenced by thermal 

properties, conductivity, heat capacity, convective coefficients, and emissivity of the 

plant material.   

Laser power and marking time are positively correlated with contrast values. 

Consequently, an optimal combination of laser power and marking time leads to higher 

contrast values. The more laser energy absorbed by the banana the higher the 

contrast values. The portion of the energy absorbed deforms the banana peel 

sufficiently to produce a noticeable mark. Jones, et al. (2001) reported that various 

contrast levels in leaf surface labelling may be adjusted to the level at which the 

mesophilic layer is sufficiently etched under the epidermal layer by the laser.  

Axial non-uniformity (ANU) and grid non-uniformity (GNU) values achieved a 

high grade, based on ISO/IEC 15415: 2011. The high quality grades of both ANU and 

GNU are due to the very well designed technical setup (see Fig. 4.2.1 and Fig. 4.2.2). 

This is in accordance with well-known quality criteria of GS1 (2018): (1) the decoder or 

camera axis should be perpendicular to the object surface; (2) there should be no 
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vibration, acceleration or deceleration during marking; (3) there should be no variable 

distances between the marking head and material surface; and (4) there should be no 

difference in the transport speed while marking the DM element. Unused error 

correction (UEC) values are influenced by small local deformations on marked areas 

over time. According to Fig. 5.29, a laser power of 1.8 W and 1.6 W with a marking 

time of 0.072 s per module shows the best result for laser marking bananas. These 

parameter values are recommended for commercial use. 

The presence of darker color areas in the DM modules and distortions in the 

finder pattern of the codes (see Fig. 5.30) indicate damage to the banana peel. The 

damage could be explained by a physiological mechanism due to wound reactions like 

natural healing, browning or the repair response of outer epidermis cells over time. 

Laser marking on the banana led to the breaking of epidermis cells and consequently 

the darkening of areas around the affected location. Marx, et al. (2013) stated that 

tissue damage after laser marking can be explained by three different phenomena: (1) 

browning happens due to oxidation processes in the marked area; (2) color changes 

are caused by local tissues’ water being completely vaporized at a high laser intensity; 

and (3) tissue of a marked area becomes burnt, which leads to deep engraving. 

Etxeberria, et al. (2006) reported that a light brownish color of the laser-marked area is 

likely because of the natural color of dry cellulose, resulting from loss of water in the 

etched area. The process of natural healing occurred in pinhole depressions by 

accumulating cutin and wax deposits in and around the depression after the laser 

marking of tomatoes and avocados. Buron-Moles, et al. (2014) explained that the 

increased abundance of proteins after wounding of “Golden Delicious” apples is due to 

“response to stress.” 

 

 

6.3.2.3. Readability of the codes 

Most of the codes generated with high laser power may damage outer cell 

layers of the bananas and lead to unsuccessful readability of the codes. However, 

labeling at a low laser power (1.6 W) tends to produce relatively low readability due to 

decreased contrast (Table 5.2.4). The results show that a laser power of 1.8 W is 

suitable for labeling of bananas after 9 days of storage (80-100% of readability). Laser 

labeling on bananas leads to insignificant cell damage in the epidermis area. 

According to Drouillard and Kanner (1999), the depth of the mark should not exceed 
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the thickness of one skin cell, in order to prevent thermal degradation and the 

breakdown of underlying tissue. 

The exact size of the DM code depends on the exact encoded data. Numbers 

or characters are encoded in terms of bits, represented by dark or light modules of an 

identical size. The larger the amount of bits required, the larger the DM code will be, 

but the density of modules in the code will increase. The readability of the code is 

indirectly affected by the DM code size, because an increasing amount of encoded 

data raises the density of modules in the code. For this reason the modules become 

smaller. Therefore, small module size stimulates damage on a banana during storage, 

since damage already arises on the cuticular barrier from the beginning of storage 

after applying high laser power. Consequently, the decision whether a region belongs 

to the foreground (object) or the background is not reliable (see Fig. 5.2.33). Tarjan, et 

al. (2014) stated that the readability of a QR code is influenced by the size of the 

modules. In this case, a small module size increases the possibility of detecting 

modules incorrectly. Normally, this indicates that the code has a low unused error 

correction grade (UEC less than 0.62).  

Laser marking of bananas allows up to 24 numerical characters to be encoded 

into a symbol with dimensions of 6 x 6 mm². This gives an indication of the very 

compact nature of the DM codes, which makes them suitable for small part marking. 

Regarding the DM size, a greater data capacity can be implemented in a smaller 

pattern size. However, in several cases a preliminary test should be applied in order to 

define the minimum requirements for the readability of the code. 

 

 
6.3. Possible application relating to the results  

6.3.1. Application for poinsettia and bananas 

The methods discussed here could be utilized for quality control via a computer 

vision inspection of the horticultural products prior to and after laser marking, in order 

to increase cost effectiveness and efficiency in manufacturing processes. For 

example, the pre-laser operations could aid in automatically transfer the plants onto a 

conveyor, by accurately determine the position and orientation of the object to be 

marked by the laser and optimizing placement of the codes, characters, or design onto 

the products (Fig. 6.3.1). The post-laser marking operations could evaluate the 

marking quality of the codes, characters, or figures to produce an optimal marked 

result. The code qualities are visually evaluated according to ISO/IEC 15415:2011 
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standards. The characters’ qualities could be evaluated by using optical character 

recognition (OCR) quality testing based on ISO/IEC 30116:2016 standards. Another 

possibility is that the development of image processing could be used to automatically 

assess damage to laser marking products. Furthermore, integrated laser systems and 

vision machines (called laser eye’s systems) for marking horticultural products have 

potential for development. Until now these applications have been largely unavailable.  

 

  

(a) (b) 

Fig. 6.3.1. (a) The character mark is placed on the upper and bottom part of the main 

skeleton of a poinsettia leaf; (b) Positioning of 2D barcodes on banana hands 

 

 

Developed algorithms that use an RGB-D camera could also be utilized for 

plant phenotyping in the greenhouse. The algorithms could be used to monitor the 

growing condition of the plants as well as the shape and architecture of the plants. The 

plant architecture provides information necessary to understand physiological 

processes governing plant functioning.  

Furthermore, since it is possible to apply laser marking to poinsettia leaves 

without harm or stress to the product’s surface, laser marking on horticultural leaves 

could be developed as antimicrobial treatments. This potential as an antimicrobial 

treatment needs more studies for further information. For bananas, the application of 

laser marking 2D codes on bananas could be a great space-saver for companies 

trying to incorporate a lot of data in their barcodes with limited room for labels.          

 

 

6.3.2. Application for other products (for example: petunia stems) 

The laser eye’s system could also be developed for other products, such as: 

apples, eggplant, mangos, coconut, oranges, tangerines, grapefruits, apples, pears, 
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plums, nectarines, pears, kiwi, avocados, potatoes, peppers, cucumbers, tomatoes, 

and so on. It is also possible to mark 2D codes on ornamental stems, such as petunia 

stems. The maximum 2D code dimension that could be positioned on petunia stems is 

3 x 3 mm² (Fig. 6.3.2). A smaller code size could be used as well; however, 

preliminary tests should be applied to determine the minimum requirements of the 

readability of the code. In the preliminary research, petunia stems were marked with 

different laser parameters (data not shown). The surface curvature and roughness as 

well as color changes of the upper layer of epidermis affect both the readability of the 

code marking pattern and contrast value.   

 

 
 

Fig. 6.3.2. Laser marking on petunia stem (2D code dimension is 3 x 3 mm²)
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6.4 Future work 

 

The findings of this thesis have presented some potential topics for further research: 

a. Further study is suggested to use a three-dimensional (3D) camera for 

positioning the code on banana hands.  

b. In practical approaches, the RGB-D method and the main skeleton method 

could be combined to create optimum results for complex overlapping plant 

leaves. 

c. Some parameters, such as variety, product color, moisture content, maturity, 

surface curvature, and roughness could be incorporated in order to acquire 

more predictable results of optimal laser marking to achieve a desired effect on 

a particular product’s characteristics.   
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7. CONCLUSIONS  
 

7.1. Optimization of laser positioning for poinsettia leaves 

 An image processing system for marking plant leaves has been presented. The 

distance transform-watershed segmentation and the main leaf skeleton segmentation 

have been adopted to extract poinsettia leaves’ images and to find the optimal laser 

position. The distance transform-watershed segmentation using Kinect V2 achieves a 

satisfactory result of 92.5%. This method has shown reliability when operated with 

overlapping leaves. The distance transform-watershed segmentation effectively 

segments overlapped plant leaves that show significant differences in depth. 

Compared to the main leaf skeleton segmentation, different luminance and 

orientations may affect the light intensity of the pixels on the skeleton; however, the 

method is still able to correctly identify the individual leaf. The detection of the main 

leaf skeleton (true positive) yields a high result (80%).  

 

 

7.2. Optimization of laser positioning for bananas 

The proposed algorithms are successful in placing 2D code in the center of fruit 

images, which are selected for optimal laser marking positioning. Additionally, the 

algorithms are effective when applied to differently shaped fruits. Positioning the 2D 

codes on the ventral banana side is recommended for some factors, such as variable 

lighting conditions and the overlapping of banana fingers can affect the ability to 

correctly detect codes. However, the proposed method, which marks at least one 2D 

code on a banana hand, obtains very satisfactory results (92.86%).   

 

 

7.3. Optimization of laser parameters for marking poinsettia leaves 

Laser marking can be applied to poinsettia leaves without damaging the 

product’s surface. Laser marking of 0.5 W [0.55 J per character] shows the lowest 

energy use that produces a high contrast with no apparent heat affected zone 

detected. Some parameters such as laser power and laser marking resolution are 

essential factors in increasing the quality of the text, contact time, and laser energy. 

Laser marking poinsettia leaves changes the leaves to dark red at the beginning of 

storage, becoming yellowish-white in color until 14 days of storage. The color changes 

are an additional benefit that increases contrast between leaf color and texts.   
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7.4. Optimization of laser parameter for marking bananas  

Laser marking of 2D codes can be implemented on bananas. The laser power 

and the marking time are suggested as useful parameters to ensure the best 

readability of DM codes on bananas. It is recommended to use a low laser power (i.e. 

1.8 W and 1.6 W) and a longer marking time (i.e. 0.072 s per module) for optimal 

marking, because the obtained readability of the DM codes on bananas after nine 

days of storage is high (80%-100%) and reaches a high grade of unused error 

correction. The readability of DM codes on bananas depends on the laser power, the 

DM size and the edge length. Applying the low laser power obtains a high readability, 

which allows up to 24 alphanumeric characters to be encoded into a 2D code with 

dimensions of 6 x 6 mm².  
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